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A B S T R A C T

Terrestrial carbon and water balances and their variability under changing cli-
matic conditions and anthropogenic disturbances are topics of great societal
and scientific importance. The role of vegetation in shaping carbon and water
dynamics is of paramount significance. Many numerical models, reflecting dif-
ferent degrees of complexity and abstraction, have therefore been developed to
mimic plant function. The aim of this thesis is to (i) shed light on how vegeta-
tion functioning is simulated in state-of-the-art terrestrial ecosystem models, (ii)
provide a critical appraisal of model strengths and weaknesses, and (iii) present
ways forward to remove some of the identified model limitations.

The first part of the thesis provides a thorough evaluation of a state-of-the-art,
process-based, dynamic vegetation model, LPJ-GUESS, by means of a global
sensitivity analysis. The rationale is that since process-based models embed
physical causalities, the sensitivity of the simulated processes should also re-
flect measurable and observed sensitivities. Having scrutinized the structural
and parameterization issues underlying LPJ-GUESS, reflecting also that of other,
structurally similar dynamic vegetation models, the subsequent parts of the the-
sis are devoted to two major model limitations, namely (1) the lack of spatial
representation and simplified soil water hydrology, and (2) the lack of ecological
realism due to simplified representation of plant trait variability.

The former limitation is analyzed with a novel ecohydrological scheme, D-LPJ,
which is based on an iterative coupling between a spatially explicit, process-
based hydrological model (TOPKAPI-ETH) and a well-established dynamic veg-
etation model (LPJ). The advantages of D-LPJ over the original, aspatial ap-
proaches of LPJ and LPJ-GUESS are illustrated for a topographically-complex
area located in the central Switzerland. The aggregation-induced biases due to
smoothing of spatial heterogeneities through coarse-grained aspatial represen-
tations are also explicitly quantified.

The second limitation is investigated with an innovative Monte Carlo approach
that is applied to simulate the diversity of plant traits. This approach revises
the broad vegetation categories, based on a discrete and static parameteriza-
tion (named Plant Functional Types), often incorporated in terrestrial ecosystem
models. Proxy plant species are generated using observed multivariate distribu-
tions of coordinated plant traits. Their performance is assessed with a mecha-
nistic ecohydrological model (T&C) across continuous, naturally occurring, me-
teorological gradients in the European Alps. The significant importance of trait-
induced variability in simulating water and carbon dynamics is quantified and
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an alternative, probabilistic approach is presented, enhancing the ecological re-
alism within models.

The last part of the thesis provides a synthesis of the aforementioned findings to-
gether with a critique of commonly applied approaches for modeling terrestrial
carbon and water dynamics. Directions for future model improvements are high-
lighted, combining deterministic with probabilistic concepts, aiming towards a
predictive framework of terrestrial ecosystem functioning.
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Z U S A M M E N FA S S U N G

Terrestrische Kohlenstoff- und Wasserkreisläufe und ihre Variabilität unter sich
ändernden Klimaverhältnissen und unter anthropogener Einwirkung sind von
grosser sozialer als auch wissenschaftlicher Bedeutung. Die Vegetation spielt
in diesen Kreisläufen eine entscheidende Rolle. Viele numerische Modelle mit
unterschiedlicher Abstraktion und Komplexität wurden bis heute entwickelt
um Vegetationsfunktionen abzubilden. Die Ziele dieser Arbeit sind, (i) zu unter-
suchen, wie Vegetationsfunktionen in modernen Modellen terrestrischer Ökosys-
teme abgebildet sind, (ii) die Schwächen und Stärken der Modelle kritisch zu
beleuchten, und (iii) Ansätze zu präsentieren, um Limitationen der Modellan-
wendung zu lösen.

Der erste Teil dieser Dissertation präsentiert eine gründliche Evaluation des
modernen, prozessbasierten dynamischen Vegetationsmodells LPJ-GUESS durch
eine globale Sensitivitätsanalyse. Diese Methode wurde gewählt in der An-
nahme, dass in Methoden welche physikalische Kausalitäten abbilden, die Sensi-
tivitäten der Prozesse denen in der gemessenen und observierten Welt entsprech-
en sollten. Nach eingehender Prüfung der Struktur und Parameter von LPJ-
GUESS, welche auch Schlüsse zu strukturell ähnlichen Modellen erlaubt, wer-
den die weiteren Teile dieser Arbeit zwei Limitationen behandeln: (1) jene be-
dingt durch grobe räumliche Auflösung und die Vereinfachungen der Boden-
wasserhydrologie, und (2) die Limitationen durch den Mangel an Realismus in
den simplifizierten Ansätzen zur Abbildung der Variabilität von pflanzlichen
Eigenschaften.

Die erste Limitation wird mit Hilfe eines neuen öko-hydrologischen Modells
D-LPJ analysiert. Dieses ist eine iterative Koppelung des räumlich expliziten,
prozessbasierten hydrologischen Modells TOPKAPI-ETH und des etablierten
dynamischen Vegetationsmodells LPJ. Die Vorteile von D-LPJ gegenüber den
nicht räumlich expliziten Ansätzen von LPJ und LPJ-GUESS werden anhand
eines topografisch sehr heterogenen Einzugsgebietes in der Zentralschweiz
demonstriert. Die Abweichungen, welche aus der Homogenisierung der räum-
lichen Variabilität entstehen, werden quantifiziert.

Die zweite Limitation wird mit einem innovativen Ansatz der Monte-Carlo
Methode untersucht, welcher die Pflanzendiversität simuliert. Dieser ermöglicht
die Revision der groben Vegetationskategorien, welche durch diskrete und
statische Parameter definiert sind und häufig Anwendung in terrestrischen
Ökosystemmodellen finden. Mit Hilfe von observierten multivariaten Verteilun-
gen von pflanzlichen Eigenschaften werden Proxy-Pflanzentypen generiert. Das
Verhalten dieser Pflanzentypen entlang von kontinuierlichen, meteorologischen
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Gradienten typisch für die Europäischen Alpen wird mit dem mechanischen
öko-hydrologischen Modell T&C untersucht. Die Signifikanz von pflanzlichen
Eigenschaften für die Simulation von Wasser- und Kohlenstoffdynamiken wird
quantifiziert. Ein alternativer probabilistischer Ansatz wird präsentiert, welcher
den ökologischen Realismus in Modellen verbessert.

Abschliessend werden die Resultate gebündelt und die etablierten Ansätze für
Kohlenstoff- und Wasserdynamiken in terrestrischen Modellen kritisch disku-
tiert. Mögliche Modellverbesserungen werden aufgezeigt, welche deterministis-
che und probabilistische Konzepte vereinen, um ein verbessertes Vorhersagesys-
tem für die Funktionalität von terrestrischen Ökosystemen zu erreichen.
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PER ILHYH

Sta qersaÐa oikosust mata, to isozÔgio tou neroÔ kai tou �njraka, kaj¸c epÐshc kai
h diakÔmans  touc lìgw metaballìmenwn klimatik¸n sunjhk¸n kai anjrwpogen¸n
epemb�sewn, kentrÐzoun idiaÐtero episthmonikì kai koinwnikì endiafèron. H sunei-
sfor� thc bl�sthshc sth diamìrfwsh tou isozugÐou tou �njraka kai tou neroÔ
eÐnai ousiastik . Plhj¸ra upologistik¸n montèlwn èqoun protajeÐ me stìqo thn
prosomoÐwsh twn basik¸n thc leitourgi¸n. Skopìc thc paroÔsac ergasÐac eÐnai:
(i) na diereun sei pwc oi basikèc leitourgièc thc bl�sthshc prosomoi¸nontai sta
sÔgqrona montèla qersaÐwn oikosusthm�twn, (ii) na parèqei mia kritik  anaskìphsh
twn pleonekthm�twn kai meionekthm�twn twn diafìrwn mejìdwn prosomoÐwshc thc
dunamik c thc bl�sthshc, kai (iii) na parousi�sei kainotìmec arijmhtikèc mejì-
douc montelopoÐhshc oikosusthm�twn, belti¸nontac ètsi merik� apì ta up�rqonta
meionekt mata.

To pr¸to mèroc thc ergasÐac parousi�zei mia leptomer c axiolìghsh enìc eurèwc
qrhsimopoioÔmenou mhqanistikoÔ montèlou dunamik c thc bl�sthshc (LPJ-GUESS),
diex�gontac mia kajolik  an�lush euaisjhsÐac tou montèlou sth diakÔmansh twn
diafìrwn paramètrwn tou. H logik  aut c thc axiolìghshc mporeÐ na sunoyisjeÐ
wc ex c: kaj¸c ta mhqanistik� montèla emperièqoun aitiatèc sqèseic basizìmenec
se fusikoÔc nìmouc, h euaisjhsÐa twn diergasi¸n pou prosomoi¸nontai prèpei na
antikatoptrÐzei thn euaisjhsÐa thc bl�sthshc ìpwc aut  parathreÐtai sto fusikì
perib�llon. 'Eqontac loipìn diereun sei ta asjen  shmeÐa tou LPJ-GUESS (pou
apoteleÐ antiproswpeutikì par�deigma apì mia plhj¸ra mhqanistik¸n montèlwn
dunamik c thc bl�sthshc), pou sqetÐzontai me th dom  tou montèlou (dhl. sqè-
seic aitÐou-aitiatoÔ) all� kai me thn parametropoÐhsh thc bl�sthshc, ta epìmena
kef�laia thc paroÔsac ergasÐac diereunoÔn kai belti¸noun ta ex c meionekt mata:
(1) èlleiyh leptomeroÔc qwrik c diakritopoÐhshc kai aplopoihmènh prosomoÐwsh twn
udrologik¸n diergasi¸n, kai (2) èlleiyh realistik c prosomoÐwshc thc eterogèneiac
thc bl�sthshc kai twn leitourgik¸n qarakthristik¸n twn fut¸n.

Prokeimènou na analujeÐ to pr¸to meionèkthma, anaptÔqjhke, sta plaÐsia thc er-
gasÐac, èna kainoÔrio oiko-udrologikì montèlo (D-LPJ). To D-LPJ basÐzetai sto
sunduasmì enìc qwrik� diakritoÔ udrologikoÔ montèlou (TOPKAPI-ETH) me èna
eurèwc diadedomèno mhqanistikì montèlo dunamik c thc bl�sthshc (LPJ), mèsw mÐac
sugklÐnousac epanalhptik c diadikasÐac. Ta pleonekt mata tou D-LPJ ènanti twn
qwrik� mh diakritopoihmènwn LPJ kai LPJ-GUESS exet�zontai se mia lek�nh aporro c
thc kentrik c ElbetÐac me ploÔsio topografikì an�glufo. Epiprìsjeta, exet�zontai
kai posotikopoioÔntai sf�lmata pou prokÔptoun stic ektim seic tou isozugÐou tou
�njraka kai tou neroÔ me montèla qwrÐc qwrik  diakritopoÐhsh.
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To deÔtero meionèkthma diereun�tai efarmìzontac mia prwtopìra mejodologÐa Monte-
Carlo gia thn prosomoÐwsh thc eterogèneiac thc bl�sthshc kai twn leitourgik¸n thc
qarakthristik¸n. Aut  h mejodologÐa anajewreÐ tic mèqri t¸ra pagiwmènec praktikèc
montelopoÐhshc thc bl�sthshc pou basÐzontai se mia diakrit  kai qronik� amet�-
blhth parametropoÐhsh twn qarakthristik¸n thc (leitourgikoÐ tÔpoi fut¸n, PFTs).
Upokat�stata eÐdh bl�sthshc prosomoi¸nontai qrhsimopoi¸ntac empeirikèc polu-
metablhtèc katanomèc twn allhlexart¸menwn leitourgik¸n thc qarakthristik¸n. H
sumperifor� touc exet�zetai se di�forec klimatikèc sunj kec, antiproswpeutikèc
ekeÐnwn pou epikratoÔn stic kentrikèc 'Alpeic, qrhsimopoi¸ntac èna mhqanistikì
oiko-udrologikì montèlo (T&C). Me autìn ton trìpo posotikopoieÐtai o kajori-
stikìc rìloc twn leitourgik¸n qarakthristik¸n thc bl�sthshc kai thc eterogènei�c
touc gia thn prosomoÐwsh twn isozugÐwn tou �njraka kai tou neroÔ. EpÐshc, parousi-
�zontai enallaktikèc, pijanotikèc mèjodoi, belti¸nontac ètsi th montelopoÐhsh thc
eterogèneiac thc bl�sthshc kai tou dunamikoÔ thc (qwrik� kai qronik�) qara-
kt ra.

To teleutaÐo mèroc thc ergasÐac apoteleÐ mia sÔnjesh twn prohgoÔmenwn kefalaÐwn
kai mia kritik  anaskìphsh twn eurèwc qrhsimopoioÔmenwn mejodologi¸n gia thn
arijmhtik  montelopoÐhsh tou kÔklou tou �njraka kai tou neroÔ sta qersaÐa oiko-
sust mata. Parousi�zontai epÐshc kateujunt riec grammèc gia peretaÐrw belti¸seic
twn arijmhtik¸n montèlwn dunamik c thc bl�sthshc, sundu�zontac nteterministikèc
me pijanotikèc proseggÐseic, stoqeÔontac ètsi se èna kalÔtero mejodologikì plaÐsio
ektÐmhshc thc dunamik c twn qersaÐwn oikosusthm�twn.
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1
I N T R O D U C T I O N

1.1 motivation and research aims

P = E + T + Q +
dS
dt

(1.1)

RN = H + λ(E + T) + G (1.2)

Equation 1.1 and 1.2 summarize the major1 physical laws underlying our cur-
rent mechanistic model representations of terrestrial carbon and water dynam-
ics, namely the conservation of mass (Equation 1.1; summarizing the terrestrial
water balance, but can be also written for the case of carbon) and energy (Equa-
tion 1.2).

The conservation of mass (Equation 1.1; i.e., matter can neither be created nor
destroyed, but can only change state and location) implies that water falling on
the simulation domain (P; precipitation in liquid or solid phase over the land
surface) is partitioned to water losses in the system through evaporation (E;
representing conversion of solid or liquid water into water vapor by physical
processes such as ground evaporation, evaporation from intercepted water and
snow, evaporation and sublimation from snow and ice), transpiration (T; repre-
sents the phase conversion to water vapor in leaf interior), surface and subsur-
face runoff and deep drainage (Q), and change in water storage (dS/dt).

The conservation of energy (Equation 1.2; i.e., in a given system energy can nei-
ther be created nor destroyed, but can only be absorbed, released or change
form) can be also respected in models, although due to computational con-
straints it is not a common practice in many modeling approaches. State-of-the-
art physically-based numerical tools partition the incoming energy to the system
(net radiative flux, i.e., the balance between incoming and outgoing shortwave
and longwave radiation; RN) into sensible heat flux (H), latent heat flux (λ(E+T);
where λ is the latent heat of vaporization or sublimation, converting the mass
fluxes to equivalent energy needed for the state transition), and soil heat flux (G).

1 Conservation of momentum in lateral water fluxes can be also preserved in numerical models,
when routing approximations are used, e.g., dynamic wave approach solving explicitly the 1-D
Saint Venant flow equations or its approximation using the kinematic wave approach [Miller,
1984].

1



2 introduction

Energy is also needed for several plant metabolic processes (e.g., photosynthe-
sis and respiration) but is negligible in comparison to the previously mentioned
terms of the energy balance. As Equation 1.1 and 1.2 demonstrate, water and
energy balances are intrinsically coupled since state-changes of water require
significant amount of energy (e.g., for converting 1 g of liquid water at 20 ◦C
to water vapour, about 2450 J are needed). More details on the coupled nature
of water and energy fluxes over land are provided in reviews by Pielke [2001],
Seneviratne et al. [2010], and Wang and Dickinson [2012], while the recent review
by Katul et al. [2012] offers insights on the evapotranspiration process across
various spatiotemporal scales.

This thesis focuses on numerical models that simulate major processes involved
in Equation 1.1 and 1.2 at the regional, catchment, and plot scales. Numerical
models are used here as virtual labs for a better understanding of physical mech-
anism controlling the interplay between water and energy cycles, and the intrin-
sically coupled carbon dynamics. While Earth observations offer an overview of
terrestrial ecosystem functioning across scales, they have to be combined with
manipulation experiments and controlled numerical simulations for getting a
better understanding of the underlying mechanisms and feedbacks [e.g., Rau-
pach et al., 2005; Kirchner, 2006; Dietze et al., 2013]. The term terrestrial ecosystem
models will be often used to refer to process-based models that simulate major
processes involved in the conservation of mass and energy in terrestrial ecosys-
tems, with emphasis on hydrological processes (e.g., vertical and lateral water
fluxes) and short- and long-term vegetation dynamics (e.g., plant establishment,
growth, and mortality). Figure 1.1 summarizes the major model types included
under the umbrella term terrestrial ecosystem models, grouped based on the scien-
tific disciplines from which they are originated.

Uncertainties are ubiquitous in every single term of the aforementioned equa-
tions and are reflected in both observation- and simulation-based inferences.
Model inputs are uncertain due to limitations of monitoring instruments to-
gether with high spatiotemporal variability of natural phenomena (particularly
P, as well as other meteorological variables affecting the energy and water bal-
ance). The stochastic nature of physical phenomena cannot be ignored, espe-
cially when future model projections are envisioned. However, throughout this
thesis the driving force of the model (hydrometeorological variables; input to
the model, and to the water and energy balance) is treated as given, focusing
on a better examination and understanding of processes partitioning the inputs
(water and energy). The partitioning of available water and energy to different
components (summarized in the right-hand side of Equations 1.1 and 1.2) is also
uncertain.

Data-based estimates of the global water and energy budgets over land high-
light the uncertainties and the importance of each component involved in the
water and energy balance. More specifically, in a recent update of the global
annual mean energy budget by Stephens et al. [2012] at the Earth’s surface, com-
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Figure 1.1: A description of major model families, and the scientific disciplines from
which they are originated. Models that simulate major processes of the ter-
restrial water and energy balance are included in the present classification
and throughout this thesis they will be referred as terrestrial ecosystem models.

piling up-to-date surface and satellite data for an approximate period 2000 to
2010, indicates that the net radiative flux is RN = 112.6± 7 W m−2 (188± 6 W
m−2 incoming shortwave, 23± 3 W m−2 outgoing shortwave, 345.6± 9 W m−2

incoming longwave and 398± 5 W m−2 outgoing longwave) and is converted
to 24.7± 7 W m−2 sensible heat flux, H, i.e., 22% of RN, and 88± 10 W m−2

latent heat flux, λ(E+T), i.e., 80% of RN. The fundamental role of latent heat flux
(evapotranspiration) is also highlighted when the global water cycle is analyzed.
Data-based estimates from Oki and Kanae [2006] show that out of the 111× 103
km3 yr−1 precipitated water over land, 65.5× 103 km3 yr−1, i.e., about 60%, re-
turns back to the atmosphere through evapotranspiration. A large fraction of
terrestrial evapotranspiration is attributed to plant activity. More than half of
the water that goes back to the atmosphere passes through plants via the tran-
spiration process [Dirmeyer et al., 2006; Lawrence et al., 2007; Miralles et al., 2011;
Jasechko et al., 2013; Schlaepfer et al., 2014; Coenders-Gerrits et al., 2014; Schlesinger
and Jasechko, 2014].

Plant functioning is of upmost importance in shaping water and energy cy-
cles over land, not only through direct, short-term biophysical and biochemical
processes (e.g., photosynthesis, transpiration) but also through carry-over ef-
fects due to environmentally-induced limitations (e.g., water-stress conditions),
therefore affecting the long-term carbon and water dynamics. Droughts are an il-
lustrative example: water-induced stress apart from changes in short-term plant
responses (e.g., reduction in transpiration and downregulation of photosynthe-
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sis), affects also plant mortality rates as well as species competition [see van der
Molen et al., 2011, for a recent review]. The critical role of vegetation is particu-
larly important when projections of ecosystem states and dynamics under non-
stationary conditions are envisioned, as for example the carbon source or sink
dynamics of forested ecosystems under changing environmental conditions, the
resilience of ecosystems and species distributions under climate-induced vari-
ability or the assessment of the impact of land use and climate change to hydro-
logical ecosystem services. Models therefore have to provide accurate approx-
imations of plant activity, so that terrestrial water- as well as the intrinsically
coupled energy-, carbon-, and nutrient-cycle are realistically represented and
the fate of terrestrial ecosystems under future, hypothetical scenarios is robustly
assessed.

Motivated by the importance of transpiration, and thus plant activity, in shap-
ing terrestrial water and energy dynamics, this study is geared toward a better
understanding of the interactions between terrestrial water cycle and short- and
long-term vegetation dynamics, combining state-of-the-art methodologies from
hydrology and vegetation science. More specifically, this thesis aims to (i) shed
light on how plant activity is represented in state-of-the-art numerical tools;
(ii) assess the strengths and weaknesses of our current model representation of
vegetation functioning; (iii) quantify the importance of spatiotemporal hetero-
geneities in abiotic (e.g., meteorological forcing, boundary conditions) and bi-
otic (e.g., plant attributes) characteristics when ecosystem responses at regional,
catchment and plot scales are simulated; and finally (iv) provide tractable ways
towards a better predictive framework for terrestrial ecosystem modeling.

1.2 state of the art and directions of previous research

Terrestrial ecosystem modeling is a highly interdisciplinary topic. Several mod-
eling tools have been developed for mimicking terrestrial water and energy dy-
namics (see Figure 1.1 for an overview). Depending on the scientific discipline
from which they are originated, different levels of abstraction are employed.
Two distinct modeling families have been emerged, namely (i) hydrological and
(ii) vegetation models. Each of them has its own strengths and weaknesses, re-
flecting biased perspectives from their developers. Hydrologists focus on abi-
otic processes (e.g., rainfall-runoff mechanisms and vertical and horizontal wa-
ter fluxes), with simplistic representation of biophysical processes (e.g., plant
transpiration). Models originated from vegetation science simulate explicitly
biophysical, biochemical, and demographic processes but simplistic approxima-
tions are made for soil water dynamics.

Hydrologists have a long tradition in modeling terrestrial water cycle. During
the recent years, so called process-based, distributed hydrological models were
developed, recognizing the importance of topography and water routing, in
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shaping the hydrological response [Freeze and Harlan, 1969; Abbott et al., 1986a, b;
Grayson et al., 1992; Todini, 1996; Beven, 2001, 2002; Liu and Todini, 2002; Reed
et al., 2004; Ebel et al., 2008]. Such tools nowadays provide continuous, quantita-
tive, spatially-explicit simulations of water fluxes at the local and regional scales.
Detailed reviews of the classification and the evolution of hydrological models
throughout years, e.g., from empirical, lumped representations, to spatially ex-
plicit process-based models, are provided by Rafsgaard [1996] and recently by
Solomatine and Wagener [2011]. Contrary to their detailed representation of abi-
otic water dynamics, terrestrial surface boundary layer is typically simplistically
approximated. Plant activity is not explicitly simulated, with the exception of
plant transpiration for which empirical modules are often employed. Vegeta-
tion therefore is treated as a passive component, affecting mainly water losses
through transpiration and surface roughness. Transpiration is crudely repre-
sented with empirical and static parameterizations, ignoring direct feedbacks
to stomatal activity through e.g., photosynthesis, or other biophysical, biochem-
ical, and demographic processes affecting plant activity.

Vegetation community has provided also several process-based models simu-
lating terrestrial water-, energy-, carbon-, and recently also nutrient-cycle across
different spatiotemporal scales (from the stand-level to regional and global scale
analyses, and from short- to long-term responses). Biophysical, biochemical,
and demographic processes occurring over land, are therefore mechanistically
simulated. Extensive reviews and classifications of vegetation models and their
properties can be found in Bugmann et al. [1996]; Le Roux et al. [2001]; Perry
and Enright [2006]; Prentice et al. [2007]; Jeltsch et al. [2008]; Medlyn et al. [2011],
and thus only a short description, highlighting major model classes and at-
tributes is provided here. Land surface schemes, originally developed from the
climate modeling community for a better description of the coupling between
biosphere and atmosphere [e.g., Sellers et al., 1986; Pitman, 2003; Arora, 2002]
provide detailed simulation of biophysical processes occurring in the land sur-
face boundary layer, respecting the conservation of mass and energy. Dynamic
vegetation models [often called in literature as Dynamic Global Vegetation Mod-
els; DGVMs; Prentice et al., 1993; Sitch et al., 2003; Prentice et al., 2007; Sitch et al.,
2008; Friedlingstein and Prentice, 2010; Levis, 2010] are also widely applied for un-
derstanding the carbon cycle (i.e., changes in carbon fluxes and stocks related
to forest dynamics) as well as the dynamic transitions between different veg-
etation types under non-stationary climatic conditions. Forest gap-models are
also developed for a better representation of landscape heterogeneities simulat-
ing explicitly demographic processes, e.g., plant establishment, competition and
disturbances [Bugmann et al., 1996; Reynolds et al., 2001]. Earth System Models
coupling state-of-the-art climate and vegetation models have also recently been
developed [e.g., Cox et al., 2000; Prinn, 2012]. Vegetation models provide there-
fore a detailed, process-based framework, covering a wide range of vegetation-
related processes occurring in terrestrial ecosystems, with soil hydrological pro-



6 introduction

cesses being an exception. Simplified representations of hydrological processes
are unfortunately a common practice in vegetation models. Vertical water fluxes
in soil are crudely represented using simplistic approaches [e.g., “bucket” hy-
drology Gerten et al., 2004] while lateral water fluxes and topographic effects are
often not at all represented.

The intrinsic coupling of terrestrial biosphere and atmosphere with the hydro-
logical cycle has led over the last years to the development of a new interdis-
ciplinary scientific field called ecohydrology [Rodriguez-Iturbe, 2000; Rodriguez-
Iturbe et al., 2001; Eagleson, 2002; Nuttle, 2002; Porporato and Rodriguez-Iturbe,
2002; Boone et al., 2004; D’Odorico et al., 2010; Asbjornsen et al., 2011; Thompson
et al., 2011; Porporato and Rodriguez-Iturbe, 2013; Dolman et al., 2014]. Ecohydrol-
ogy can be defined as “the science, which seeks to describe the hydrologic mechanisms
that underlie ecologic patterns and processes” [Rodriguez-Iturbe, 2000], and combines
process understanding from both hydrological and vegetation communities. The
innovation of ecohydrological models in comparison to the classical distributed
hydrological models is that, instead of simulating the contribution of the vegeta-
tion component to water balance empirically, they explicitly account for biophys-
ical mechanisms (e.g., vegetation structure and the coupling of photosynthesis
with stomatal regulation, and thus transpiration rates). Ecohydrological models
are thus process-oriented hydrological models, which explicitly account for the
intrinsic coupling of hydrological response and plant physiological processes
and dynamics. Such numerical tools aim to improve the realism regarding the
simulated biophysical processes, but account mostly for short-term vegetation
dynamics (e.g., phenological cycles of a forest preserved always in a mature
state), ignoring soil biogeochemistry and forest stand demography that shape
forest growth dynamics in the long-term. Examples of hydrological models with
a mechanistic representation of vegetation component are becoming more abun-
dant [e.g., Arora, 2002; Wattenbach et al., 2005; Ivanov et al., 2008a; Fatichi et al.,
2012a; Maxwell et al., 2014]. Few examples of ecohydrological models that encap-
sulate also long-term ecological processes exist [e.g., Tague and Band, 2004].

1.3 thesis methodological approach and structure

In order to accomplish the aims of this study, summarized in four key points in
Section 1.1, state-of-the-art numerical tools are evaluated, revised and applied,
together with advanced statistical techniques and multiple Earth observations.
The main research points addressed in this thesis are summarized in Figure
1.2.

Specifically, two well-established dynamic vegetation models (LPJ [Sitch et al.,
2003] and LPJ-GUESS [Smith et al., 2001]) are first selected as representative mod-
els for simulating biophysical, biochemical, and demographic processes across a
wide rage of spatiotemporal scales (from local, to regional, and global, and from
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short- to long-term vegetation dynamics). A critical evaluation of LPJ-GUESS is
performed by means of a global sensitivity analysis (Chapter 2). The rationale
behind this analysis is that since process-based tools embed physical causalities,
the sensitivity of the simulated processes should reflect the observed, real-world
sensitivities. Having scrutinized structural and parameterization issues under-
lying LPJ-GUESS (reflecting also that of other, structurally similar models) the
rest of the thesis focuses on two major limitations identified by the sensitivity
analysis, namely (i) lack of spatial representation and simplified soil water hy-
drology, and (ii) lack of ecological realism due to a simplified representation of
species variability.

Terrestrial Ecosystem 

Modeling

Ch.2: Global Sensitivity 

Analysis

Ch.3: Spatial 

heterogeneities & 

soil water dynamics

Ch.4: Floristic 

complexity & plant-trait 

variability

Model evaluation:
pinpointing 

structural & 

parameterization 

issues

Model improvements:

-!ne resolution spatial 

representations

-probabilistic simulation of 

plant-trait diversity

Figure 1.2: A schematic representation of the thesis structure. Chapter 2 provides a
thorough evaluation of a state-of-the-art terrestrial ecosystem model (LPJ-
GUESS), and the following chapters improve the identified model limita-
tions, namely, the lack of spatial representation, reflecting topographic vari-
ations, and mechanistic soil water dynamics (D-LPJ ecohydrological scheme;
Chapter 3) and the lack of inter- and intra-specific plant trait variability
(proxy plant species from a multivariate plant-trait distribution; Chapter 4).

In order to further investigate the role of local scale heterogeneities in terrestrial
ecosystem functioning, a spatially explicit version of LPJ is developed, D-LPJ,
where “D” stands for distributed in space (Chapter 3). In D-LPJ, the simplified
soil hydrological modules of the original LPJ are substituted with a distributed
hydrological model (TOPKAPI-ETH) and detailed information of local scale
attributes (e.g., meteorological forcing, soil properties) is prescribed using a
fine resolution grid. In addition, local scale information of dominant vegetation
types is also prescribed in D-LPJ simulations, moving beyond the paradigm of
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potential natural vegetation, embedded in most of the DGVM applications. The
performance of the new, spatially explicit dynamic vegetation model (D-LPJ) is
assessed in a topographically-complex area located in central Switzerland using
multivariate datasets. The advantages of D-LPJ over the original, non-spatially
explicit, approaches of LPJ and LPJ-GUESS are further demonstrated.

The role of species diversity in simulated terrestrial water and carbon dynam-
ics, highlighted by the global sensitivity analysis as a key model limitation, is
further analyzed in Chapter 4. A state-of-the-art ecohydrological model, T&C
[Fatichi et al., 2012a], is used for this purpose. Ecohydrological tools are devel-
oped for local and regional scale applications and therefore provide a more de-
tailed representation of the soil-plant-atmosphere continuum when compared
to dynamic vegetation models (such as LPJ and LPJ-GUESS), that due to the
larger simulation domains and the computational burden, heuristic approxima-
tions are often made. T&C is selected due to its realism in preserving the wa-
ter and energy budget as well as mechanistic representation of environmental
controls on plant functioning. The importance of species-induced variability in
simulating water and carbon dynamics is evaluated across naturally occurring
meteorological gradients in the European Alps. Proxy-plant species are gener-
ated, with observed coordinated plant traits, and their performance is simulated
using the T&C model. The analysis reveals the important role of plant diversity
when terrestrial carbon and water dynamics are simulated. It further demon-
strates that species-induced heterogeneities can be encapsulated in modeling
schemes through probabilistic approaches. The use of empirical multivariate
distributions of coordinated plant-traits can enhance species representation and
thus the robustness of terrestrial ecosystem models.

The last part of the thesis (Chapter 5) provides a synthesis of the findings pre-
sented in Chapter 2, 3, and 4 together with a critique of current, commonly
applied approaches for modeling terrestrial carbon- and water-cycles. Building
upon the presented results and the identified model strengths and weaknesses,
directions of future model improvements are highlighted, combining determin-
istic with probabilistic concepts, aiming towards a predictive framework of ter-
restrial ecosystem functioning and the intrinsically coupled water and carbon
dynamics.
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abstract

Dynamic vegetation models have been widely used for analyzing ecosystem dy-
namics and their interactions with climate. Their performance has been tested
extensively against observations and by model intercomparison studies. In the
present analysis, LPJ-GUESS, a state-of-the-art ecosystem model, was evaluated
by performing a global sensitivity analysis. The study aims at examining po-
tential model limitations, particularly with regard to long-term applications. A
detailed sensitivity analysis based on the variance decomposition is presented
to investigate the structural model assumptions and to highlight processes and
parameters that cause the highest variability in the output. First and total or-
der sensitivity indices were calculated for selected parameters using Sobol’s
methodology. In order to elucidate the role of climate on model sensitivity, dif-
ferent climate forcings were used based on observations from Switzerland. The
results clearly indicate a very high sensitivity of LPJ-GUESS to photosynthetic
parameters. Intrinsic quantum efficiency alone is able to explain about 60% of
the variability in vegetation carbon fluxes and pools for a wide range of climate
forcings. Processes related to light harvesting were also found to be important
together with parameters affecting forest structure (growth, establishment, and
mortality). The model shows minor sensitivity to hydrological and soil texture
parameters, questioning its skills in representing spatial vegetation heterogene-
ity at regional or watershed scales. In the light of these results, we discuss the
deficiencies of LPJ-GUESS and possibly that of other, structurally similar, dy-
namic vegetation models and we highlight potential directions for further model
improvements.

2.1 introduction

Understanding and simulating the terrestrial carbon cycle continues to be a
great challenge [Pitman et al., 1990; Bonan et al., 1992; Cox et al., 2000; Cramer et al.,

Pappas, C., S. Fatichi, S. Leuzinger, A. Wolf, and P. Burlando, Sensitivity analysis of a process-
based ecosystem model: Pinpointing parameterization and structural issues, Journal of Geophysi-
cal Research: Biogeosciences, 118(2), 505–528, doi: 10.1002/jgrg.20035, 2013
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2001; Melillo et al., 2002; Moorcroft, 2006; Heimann and Reichstein, 2008; Purves and
Pacala, 2008a]. The role of vegetation is of paramount importance since it reg-
ulates the transport of water, carbon, energy, and momentum at the land sur-
face, via many non-linear biophysical and biochemical processes [Pitman, 2003;
Bonan, 2008b; Heimann and Reichstein, 2008; Arneth et al., 2010; Anderson et al.,
2011; Fatichi et al., 2012a]. Many numerical models, reflecting different degrees
of complexity and abstraction, were developed mimicking terrestrial ecosystem
structure and dynamics. The need for a better understanding and representation
of the biosphere, as well as an increasing interest in investigating the terrestrial
carbon cycle contributed to the development of process-based terrestrial ecosys-
tem models [Foley, 1994; Liu et al., 1997; Purves and Pacala, 2008a; Levis, 2010;
McMahon et al., 2011]. Process-based models are very often used as reliable tools
for investigating the effect of climate and anthropogenic intervention on short
and long term vegetation dynamics [Melillo et al., 1993; Cox et al., 2000; Moorcroft,
2003; Evans, 2012]. In the present study, we are focusing on Dynamic Global
Vegetation Models (DGVMs) [Peng, 2000; Ostle et al., 2009; Levis, 2010; Quillet
et al., 2010]. DGVMs have been extensively used for simulating the terrestrial
carbon balance and for assessing changes and feedbacks in vegetation structure
and productivity due to climate variability [e.g., Cramer et al., 2001; Bachelet et al.,
2003; Morales et al., 2007; Zaehle et al., 2007; Le Quéré et al., 2009].

Testing model performance against observations as well as model intercompar-
isons are important steps for model evaluation [Hurtt et al., 1998; Moorcroft, 2006;
Quillet et al., 2010]. Although absolute verification and validation of numerical
models is basically impossible as natural systems are never closed [Oreskes et al.,
1994], model confirmation in relative terms can be obtained by comparing model
output with observed variables. The recent increase in data quantity and qual-
ity especially due to eddy-flux tower networks [Baldocchi et al., 2001; Baldocchi,
2008], remote sensing products [Myneni et al., 2002; Kerr and Ostrovsky, 2003],
and forest inventories [Frayer and Furnival, 1999; Lischke and Löffler, 2006], offers
a great chance for assessing model performance against multiple variables and
datasets. The use of these datasets led to numerous model applications assess-
ing the skill of terrestrial biosphere models in reproducing current ecosystem
variables [e.g., Kucharik et al., 2000; Cramer et al., 2001; Bachelet et al., 2003; Hickler
et al., 2004; Krinner et al., 2005; Kucharik et al., 2006; Beer et al., 2010; Medvigy and
Moorcroft, 2012]. There are also many intercomparison studies among different
terrestrial ecosystem models, testing the consensus of a variety of model struc-
tures and parameterizations [Cramer et al., 1999, 2001; House et al., 2003; Morales
et al., 2005; Friedlingstein et al., 2006; Ito and Sasai, 2006; Luo et al., 2008; Sitch et al.,
2008; Schwalm et al., 2010; Dietze et al., 2011; Haddeland et al., 2011; Wang et al.,
2011; Wolf et al., 2011; Keenan et al., 2012].

While many intercomparison studies showed substantial differences among the
results of process-based models, few mechanistic explanations on the reasons
of their poor agreement are usually provided [Cramer et al., 1999; Roxburgh et al.,
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2004; Ito and Sasai, 2006; Jung et al., 2007b, a]. Discrepancies among DGVMs
raise doubts about their robustness and reliability [Morales et al., 2005], illustrat-
ing that a predictive modeling framework of the biosphere is still problematic
[Moorcroft, 2006; Heimann and Reichstein, 2008; Fisher et al., 2010; Richardson et al.,
2011; Evans et al., 2012]. Therefore, a better process representation and a more
accurate parameterization of terrestrial ecosystem models are required.

Model development and improvements of their performance based only on
model intercomparison studies or model evaluation against observations can be
difficult due to the high complexity and dimensionality of model structures. In
fact, intrinsic structural model uncertainties can often be compensated through
parameter adjustments [Chen et al., 2011; Bonan et al., 2011], leading to satisfac-
tory model performance and realistic results, without providing a holistic un-
derstanding of the system [Medlyn et al., 2005; Beven, 2006; Keenan et al., 2011a].
In addition, while model evaluation against observed variables and model inter-
comparison studies are fundamental for describing the overall structural model
uncertainty and discrepancies, they provide only partial information about the
sources of bias and uncertainties, especially when metrics summarizing many
processes are used in the comparison.

Sensitivity analysis, i.e., the study of how the uncertainty in model realizations
is apportioned to the different sources of uncertainty in the model inputs, is con-
sidered one of the major steps for model evaluation as well as a very elegant test
highlighting model limitations and directions of further improvements [Sheng
et al., 1993; Saltelli and Scott, 1997; Saltelli et al., 2000b; Medlyn et al., 2005; Jakeman
et al., 2006; Cariboni et al., 2007]. The need for well designed, rigorous Global
Sensitivity Analysis (GSA) is reinforced due to: (i) the intrinsic complexity of
terrestrial ecosystems that is typically translated in the DGVMs’ framework
through non-linear relationships among processes (e.g., photosynthesis, respi-
ration, stomatal regulation) and environmental variables (e.g., air temperature,
radiation, CO2 concentration) [Jarvis, 1995; Baldocchi et al., 2002; Cox et al., 2006;
Kimmins et al., 2008], (ii) the large number of parameters (i.e., many degrees
of freedom) that this type of models include [Manson, 2001; Lawrie and Hearne,
2007; Tang and Bartlein, 2008], (iii) the physically-based framework of DGVMs,
implying that the sensitivity of the implemented components should also reflect
the sensitivity of the real processes. Therefore, sensitivity analysis can be seen
as an important step for model evaluation. Advanced statistical techniques are
strongly recommended for performing a thorough GSA, accounting not only for
first order parameter effects, but also assessing the effect of interactions among
different parameters and processes [Saltelli et al., 2000a, 2004, 2008].

Surprisingly, the variety of terrestrial ecosystem models, their increasing de-
gree of sophistication, and their numerous applications, are usually followed
by a scarcity of proper sensitivity analyses, ignoring European [EC, 2009] and
American [EPA, 2009] guidelines about best modeling practices. Despite the vast
amount of GSA methodologies and literature covering this topic [e.g., Hamby,
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1994; Saltelli et al., 2000a; Frey and Patil, 2002; Saltelli et al., 2004; Cariboni et al.,
2007; Saltelli et al., 2008, 2006], practitioners and modelers very often choose sim-
plistic approaches for investigating parameter uncertainty and sensitivity, that
are prone to numerous problems [Saltelli, 1999; Saltelli and Annoni, 2010].

Taking into account that sensitivity analysis is an essential step for model de-
velopment, improvement and evaluation, we performed a detailed GSA, based
on a state-of-the-art methodology, for a well established DGVM: the LPJ-GUESS
terrestrial ecosystem model [Smith et al., 2001; Sitch et al., 2003; Gerten et al.,
2004]. Many studies have been published demonstrating the skill of LPJ, and
LPJ-GUESS in predicting potential vegetation and productivity at global and
regional scales [e.g., Morales et al., 2005; Hély et al., 2006; Koca et al., 2006; Morales
et al., 2007; Hickler et al., 2012]. The uncertainty in LPJ and LPJ-GUESS results
was also assessed, under different perspectives, by Zaehle et al. [2005] and Wram-
neby et al. [2008] respectively.

The present study conducts for the first time a variance-based GSA of a rep-
resentative DGVM. Parameters covering the entire spectrum of simulated pro-
cesses are included in the analysis. In order to elucidate the role of climate on
model sensitivity, different climatic forcings, based on meteorological data from
Switzerland, are selected. This study allows not only for identification of the
most influential parameters (which is the typical objective of many published
sensitivity analyses), but goes a step further. Specifically, the following ques-
tions are posed: (i) does the sensitivity (or the lack of sensitivity) of the imple-
mented components reflect the sensitivity of the real processes? (ii) Is there any
dominant process (characterized by a group of parameters) that controls model
response?

On the basis of the GSA analysis, structural and conceptual deficiencies underly-
ing LPJ-GUESS are therefore highlighted and suggestions for potential improve-
ments of DGVMs are discussed. While differences may exist in the way specific
components are parameterized in different DGVMs (e.g., photosynthesis, tran-
spiration, soil biogeochemistry), the general model structure and the environ-
mental controls are mostly similar [Levis, 2010; Quillet et al., 2010]. Therefore, we
argue that many of our conclusions are not limited to the LPJ family of models
but are relevant for many other terrestrial ecosystem models.

2.2 methodology

2.2.1 The Lund-Potsdam-Jena General Ecosystem Simulator (LPJ-GUESS)

LPJ-GUESS is a state-of-the-art terrestrial biogeochemical model of forest growth
which combines LPJ-DGVM [Lund-Potsdam-Jena Dynamic Global Vegetation
Model; Sitch et al., 2003] with a more detailed representation of vegetation
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dynamics GUESS [General Ecosystem Simulator; Smith et al., 2001]. A short
overview of the features and assumptions of LPJ-GUESS is provided here. A
more detailed model description can be found elsewhere [Smith et al., 2001;
Sitch et al., 2003; Gerten et al., 2004], as well as numerous model applications in
different locations worldwide [Badeck et al.; Hickler et al., 2004; Morales et al., 2005;
Hély et al., 2006; Koca et al., 2006; Morales et al., 2007; Wolf et al., 2008; Hickler et al.,
2012].

LPJ-GUESS has a process-based representation of land-atmosphere carbon and
water exchange and embeds a mechanistic approach for mimicking terrestrial
vegetation dynamics. Key ecosystem processes such as photosynthesis, respi-
ration, stomatal regulation, plant phenology and soil biogeochemistry as well
as soil hydrological processes are simulated daily. Processes related to forest
successional dynamics such as plant growth, establishment, and mortality are
computed annually. Vegetation properties are assigned using plant functional
types (PFTs), a classification that groups plants based on their major functional
traits [Bonan et al., 2002]. Each PFT has predefined physiological and bioclimatic
attributes (Table 2.1) which determine whether the prevailing climate conditions
are favorable or not for its establishment and growth, i.e., different PFTs occur in
different climates. The model version used in this study includes the hydrolog-
ical improvements presented by Gerten et al. [2004]. While LPJ and LPJ-GUESS
apply identical modules for simulating land-atmosphere coupling and plant-
level carbon dynamics, their main difference, which optimizes LPJ-GUESS for
regional applications, lies in the representation of vegetation dynamics [Smith
et al., 2001]. LPJ-GUESS, similarly to other individual-based models [e.g., Moor-
croft et al., 2001; Sato et al., 2007; Medvigy et al., 2009], uses a mechanistic approach
based on forest dynamic models [gap models e.g., Prentice et al., 1993], for mim-
icking vegetation heterogeneity at the local scale. Forest structure is represented
by simulating 100 replicated patches of potential PFTs with different age classes
(cohorts). The use of several replicated patches accommodates for the variabil-
ity due to stochastic processes such as plant establishment and mortality. In
the present study, three PFTs were used: two woody PFTs (needle-leaved ever-
green, NE, and broad-leaved summergreen, TBS) and one generic herbaceous
(C3 grass, GRS). The parameterization of PFTs is based on previous works of
Sitch et al. [2003], Hickler et al. [2004], and Miller et al. [2008]. Fire disturbances
were not used in the current study. Only a generic background mortality repre-
sented by stochastic disturbances (e.g., storms, diseases) was considered for the
sensitivity analysis experiment. Simulation starts with no vegetation (i.e., bare
ground), therefore for each parameter set a period of 1000 years (constructed by
repeating randomly years of the observed climate), with preindustrial CO2 lev-
els, was used to spin-up the model and define the initial states of carbon pools
and vegetation cover in equilibrium with the climate forcing (spin-up simulation
period). Starting from the steady state obtained after the spin-up, the model was
successively driven with daily data (Section 2.2.2) based on the historical Swiss
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meteorological records (historical simulation period). The sensitivity analysis
was carried out only for the historical simulation period.

Table 2.1: Plant Functional Types (PFTs) used for the analysis, abbreviations and biocli-
matic limits.

NE TBS GRS

PFT Shade-tolerant Shade-tolerant

needle-leaved broad-leaved Grass

evergreen summergreen

Photosynthesis pathway C3 C3 C3

GDDmin
a

600 1500 -

Tc,min
b

-30 -3.5 -

Tc,min
c

-1.5 6 -
a
Minimum degree-days sum (5

o
C base) for establishment (

o
C).

b
Minimum coldest month temperature for survival (

o
C).

c
Maximum coldest month temperature for establishment (

o
C).

2.2.2 Climate data

LPJ-GUESS uses meteorological measurements of daily precipitation, temper-
ature and sunshine hours and annual values of CO2 concentration as climate
forcings. Atmospheric CO2 concentrations were derived from ice core recon-
structions [Sitch et al., 2003; Frank et al., 2010] and the Mauna Loa record [Keeling
et al., 2009]. We carried out plot-scale simulations for which no explicit spatial
dimension is required. In order to investigate the model sensitivity under dif-
ferent climate conditions, virtual stations, representative of the entire Switzer-
land, were generated, covering a wet-to-dry gradient and a wide range of el-
evations. Daily climate forcings were defined following a detailed analysis of
200 Swiss meteorological stations with high quality measurements of precipita-
tion, temperature, and radiation (Figure 2.1). Three stations were identified as
representative for dry, normal and wet conditions with about 600 (Sion), 1300
(Chaumont), and 2000 (Ebnat-Kappel) [mm/year] of annual precipitation. Ob-
served precipitation and radiation time series from these stations, from January
1st 1966 to December 31st 2009 (44 years), were used in the analysis (Table 2.2).
Temperature time series measured at the meteorological station of Chaumont,
1073m above sea level (a.s.l.), was used to force the model, after applying an
environmental temperature lapse rate of 0.65◦ C/100 m. This operation allows
us to generate five virtual elevation bands (i.e., different temperature time se-
ries) from 200 m to 2600 m a.s.l. with a 600 m interval (Table 2.2), covering
the entire range of vegetated area in Switzerland. The climate types used for
the GSA are therefore a combination of the three identified precipitation-cloud
cover patterns (dry, normal, and wet) with five different temperature time series
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representative of different elevation bands (fifteen virtual stations in total). Al-
though the synthetic climate forcings (virtual stations) were based only on Swiss
records, they are likely to be representative of much larger area due to the wide
range of precipitation and temperature regimes covered by the analysis (Table
2.2).

Table 2.2: Climatic forcings used for the sensitivity analysis based on observations from
200 Swiss meteorological stations. The temperature-based elevation bands are
created according to the meteorological station of Chaumont.

Dry Normal Wet 200 m 800 m 1400 m 2000 m 2600 m

Annual 600 1245 1898 11.8 7.9 4 0.1 -3.8

Winter 163 315 414 4.4 0.5 -3.4 -7.3 -11.2

Spring 123 288 457 10.6 6.7 2.8 -1.1 -5

Summer 166 336 604 19.4 15.5 11.6 7.7 3.8

Autumn 148 305 424 12.4 8.5 4.6 0.7 -3.2

Mean Precipitation [mm] Mean Temperature [
o
C]

2.2.3 Sensitivity analysis

A detailed description of the methodology applied for the GSA is provided
in Appendix A, and just the outlines are summarized in the following subsec-
tions.

The structure of LPJ-GUESS is complex, including many simulated processes
and potentially many interactions, therefore no a priori assumption can be made
about the linearity, monotonicity, or additivity of the model response to param-
eter changes. In these conditions, commonly applied practices of simply chang-
ing one-parameter-at-a-time are considered inappropriate [Saltelli and Annoni,
2010]. In the present analysis, LPJ-GUESS is treated as black-box, without as-
sumptions about its structure (i.e., model-free approach). Furthermore, since
model outputs are time series, the mean of each output variable over the 44-
years of the historical period (i.e., starting from the spun-up conditions) is used
for the sensitivity analysis. This allows us to assess the model sensitivity, filter-
ing the influence of variability induced by inter-annual or seasonal climate and
vegetation fluctuations. The methodology used for the GSA of LPJ-GUESS is
summarized in four steps:

1. Selection of the output of interest. Since LPJ-GUESS has many different
output variables (vegetation and soil carbon as well as water fluxes and
states), the model sensitivity is expected to be different according to the
selected model output. In the present study, we focused on the follow-
ing variables: net primary productivity, NPP, (NPP=GPP-R, where GPP
denotes the gross primary production and R is the sum of plant mainte-
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Figure 2.1: (a) The 200 analyzed meteorological stations in Switzerland with the 3 se-
lected stations, representative of dry, normal, and wet conditions. (b) Annual
statistics, i.e., mean, standard deviation, and percentage of dry days for the
investigated stations. The selected stations are highlighted.

nance and growth respiration) and vegetation carbon pools (i.e., the sum
of leaves, sapwood, heartwood, and fine roots, carbon). These are typically
the main outputs of DGVMs.
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2. Selection of parameter ranges and distributions. The key parameters for
the principal processes were identified and included in the analysis (Sec-
tion 2.2.3.1).

3. Qualitative GSA. A screening test was applied to identify a sub-set of
the most important parameters. The purpose of the screening sensitivity
analysis is applied to gain insights into the importance of parameters with
low computational cost (Section 2.2.3.2).

4. Quantitative GSA. An explicit, quantitative evaluation of parameter impor-
tance and interactions was performed for the sub-set of parameters identi-
fied in the screening sensitivity analysis. A variance based GSA technique
is used for this task (Section 2.2.3.3).

2.2.3.1 Parameter ranges and assumptions

On the basis of extensive literature research and model structure investigation,
34 model parameters, which are linked to the main simulated processes, namely,
parameters related to plant establishment, growth and mortality, soil organic
matter dynamics, plant biochemical and biophysical processes, plant water de-
mand and uptake, and hydrological processes (e.g., runoff and percolation),
were selected for the GSA. The model sensitivity to soil texture and soil charac-
teristics was also investigated by including in the GSA the parameter regulating
the soil water storage capacity available to plants, SSC (Table 2.3).

Parameter ranges represent a very critical but unavoidable choice for any sensi-
tivity analysis study [Wallach and Genard, 1998], therefore a thorough selection
has to be made. According to suggested guidelines [EC, 2009; EPA, 2009], GSA
requires a detailed coverage of the entire parameter space over the full range
of plausible values. Particular attention is thus paid in defining the uncertainty
ranges of the examined parameters (see Table 2.3, and references therein). More
specifically, for well documented parameters, the range obtained from measure-
ment variability was used, while for empirical parameters, a plausible range
was approximated based on our current knowledge, modeling experience, and
literature survey (Table 2.3).

Model parameters are treated as independent random variables and their un-
certainty is characterized by a uniform probability density function (PDF). Pa-
rameter independence is a crude but necessary assumption since our current
knowledge about ecosystem processes does not allow for quantitatively prede-
fined correlations. The orthogonality of the parameter space also facilitates the
sensitivity analysis since it enhances applicability and computations of many
GSA methodologies.
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The choice of a non-informative PDF, such as the uniform, reflects the lack of
knowledge which does not allow us to assign a well-defined distribution [see
also Radtke et al., 2001; Medlyn et al., 2005]. It is also coherent with other studies
that mostly used uniform PDFs [e.g., Zaehle et al., 2005; Wramneby et al., 2008].
These conservative assumptions may lead to overestimation of model uncer-
tainty and sensitivity since improbable parameter combinations can be included.
In order to partially reduce this effect and preserve the trait differences among
plant types, PFT specific parameters were adjusted in their uncertainty range
by maintaining a constant ratio between the different PFTs, derived from the
standard model parameterization.

2.2.3.2 Screening exercise: Elementary Effects

The basic idea of screening approach is based on the Pareto’s principle, i.e,
model structures tend to have few very influential parameters and a majority
of non-influential ones [Saltelli et al., 2000a]. A special case of screening sensi-
tivity analysis is the method of elementary effects (EE) which was originally
proposed by Morris [1991]. The method is based on individually randomized
many one-at-a-time designs. Derivatives with wide range of variation are calcu-
lated over the parameter space and their average values are used to provide a
global sensitivity metric (see Section A.1 for a detailed description).

The basic statistics, mean (µEE) and standard deviation (σEE), of a number of
incremental ratios (EE), are the sensitivity measures suggested by Morris [1991]
for parameter ranking (see Section A.1 for further details). The mean of EE, µEE,
is an estimator of the overall influence of a parameter to the output, and the stan-
dard deviation of EE, σEE, is an indicator of the higher-order parameter effects.
The absolute mean value of EE (µ∗EE) is used, instead of µEE, since it is considered
as more robust sensitivity metric especially for the case of non-monotonic func-
tions [Campolongo et al., 2007]. In this study, to facilitate the interpretation of the

results and the ranking of parameters, the Euclidian distance, ε =
√
µ∗EE

2 + σ2EE,
of (µ∗EE, σEE) from the origin (0, 0) was used for parameter ranking. In the case
of non-linearities and parameter interactions, this is a fair approximation of the
overall parameter sensitivity.

The EE screening test was recursively applied for all the investigated climates to
qualitatively assess the relevant importance of each of the 34 parameters. Param-
eter ranking according to the metric ε varies among different output variables
and also among different PFTs. An objective selection of the most important
parameters was performed using two criteria: (i) the 34 parameters were first
ranked according to their mean value of ε across the 15 climatic forcings, then
(ii) the selection was further restricted by ranking the parameters according to
the standard deviation of ε. The rational of this classification is that parameters
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presenting high values of mean ε in combination with low standard deviation
of ε, are influential parameters over most climatic scenarios.

While EE method is considered as an accurate and efficient screening test [Cam-
polongo and Braddock, 1999; Campolongo et al., 2007], a major drawback is its
qualitative character. Since parameters are ranked in terms of relevant impor-
tance, no information is provided about how much a given parameter is more
important than another or how the different parameters interact [Saltelli et al.,
2000a, 2004]. Therefore, after a subset of the most influential parameters is iden-
tified through the screening test, a detailed variance-based GSA was applied in
order to quantify explicitly the importance of, and interactions among, different
parameters.

2.2.3.3 Variance-based sensitivity analysis

The Sobol’ methodology [Sobol’, 1993], a special type of variance-based sensi-
tivity analysis, is applied on the subset of the few most important parameters
selected after the qualitative screening exercise (Section 2.2.3.2). The underlying
assumption is that all the information about model uncertainty is captured by
its variance.

Sobol’ sensitivity analysis is based on the traditional analysis of variance (ANO-
VA) [Archer et al., 1997]. In summary, assuming that Y = f(X) is a generalized
model and X = {X1, . . . ,Xk} is a vector of parameters (random variables), where
k is the total number of investigated parameters, then the model response, f(X),
is decomposed through a functional ANOVA into summands of increasing di-
mensionality:

f(X) = f(X1, . . . ,Xk) =
= f0 +

k∑
i=1

fi(Xi) +

k∑
i=1

k∑
j>i

fij(Xi,Xj) + . . .+ f12...k(X1, . . . ,Xk) (2.1)

Note that the following convention is applied in the present work: capital letters
are used for random variables, small letters for their realizations and bold for
vectors and matrices. Obviously, there are many different ways to decompose
f(X) in the form of Equation 2.1, but provided that (i) the vector X consists of
independent parameters, (ii) f0 is a constant (f0 = E[Y]) and (iii) all the other
terms in Equation 2.1 are selected such that they are square integrable with
zero mean, then the decomposition is unique [Sobol’, 1993]. Once we square and
integrate Equation 2.1, we can partition the total output variance, VY , into terms
of increasing dimensionality:
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VY = V[Y] = V[f(X)] =
k∑
i

Vi +

k∑
i=1

k∑
j>i

Vij + . . .+ V12...k (2.2)

where Vi = V[E[Y|Xi = x∗i ]] , Vij = V[E[Y|Xi = x∗i ,Xj = x∗j ]] − Vi − Vj , and
so on. E[· | ·] is the conditional expectation, and x∗i , x

∗
j denote the real values

of the parameters i and j, respectively. In other words, similar to the ANOVA
concept, the total output variance is partitioned to different sub-components
which contribute to the overall output variability [Archer et al., 1997; Chen et al.,
2005].

The sensitivity indices are then derived as the ratios of partial variances con-
tributed by specific parameters of interest over the total output variance:

1 =

k∑
i

Si +

k∑
i=1

k∑
j>i

Sij + . . .+ S12...k (2.3)

where Si is the first order sensitivity index (or main effect) of the ith parame-
ter, Sij is the second order sensitivity index which represents the interactions
of the ith and jth parameters and so on. Accordingly, the total sensitivity in-
dex, STi, which represents the overall parameter importance (first and higher
order effects), for the orthogonal case (i.e., independent parameters) is the sum
of all the sensitivity indices of Equation 2.3 that include the ith parameter
[Saltelli et al., 2004]. The first and total order sensitivity indices are estimated
since they include the most essential information and they offer a robust estima-
tion of parameter importance and interactions [Homma and Saltelli, 1996; Saltelli,
2002].

The first order sensitivity index of parameter Xi is defined as:

Si =
Vi
VY

=
V[E[Y|Xi]]

V[Y]
(2.4)

The variance of the conditional expectation V[E[Y|Xi]], represents the expected
variance reduction that could be achieved when Xi would become perfectly
known (i.e., Xi = x∗i ). The expectation of model response Y over the entire vari-
ation interval of Xi (i.e., E[Y|Xi]) is used since we are not able to know the real
value x∗i for each parameter Xi. First order sensitivity indices represent the main
effect contribution of individual parameters to the output variance [Saltelli et al.,
2008] and are therefore considered an agile measure for sensitivity assessments,
but they are not enough for a rigorous GSA because quantification of higher
order effects can also be important [Chan et al., 1997].

Total order sensitivity indices attempt to bridge this gap by estimating not only
first but also higher order effects. According to variance decomposition pre-
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sented in Equation 2.2, the total effect index of the ith parameter can be ex-
pressed as: STi = Si +

∑k
j 6=i Sij + . . .+ S12...k and it is defined as:

STi =
E[V[Y | X∼i]]

V[Y]
= 1−

V[E[Y | X∼i]]

V[Y]
(2.5)

where X∼i is a vector of all the random variables (i.e., parameters) but the ith.
The term E[V[Y | X∼i]] is the expected amount of variance that would remain un-
explained if Xi, and only Xi, were left free to vary over its uncertainty range, all
the other parameters (i.e., the vector X∼i) having been learnt [Homma and Saltelli,
1996; Saltelli et al., 2008]. Similarly to the main effect, the outer expectation is
used since the true values of the X∼i vector are not known. Total effect indices
play a pivotal role in distilling information about the overall parameter impor-
tance since they highlight nonadditive features of the model structure and allow
one to quantify parameter interactions, by subtracting the first order from the
total sensitivity indices.

A detailed description of the implemented computational scheme is available
in the Section A.2. In summary, for estimating first and total sensitivity indices,
the computational strategy originally proposed by Sobol’ [1993] and further im-
proved by Saltelli [2002] and Saltelli et al. [2010] was followed. A convergence
test was also conducted for defining the number of necessary model evalua-
tions (6656 model runs were selected, see details in Section A.4). The sampling
strategy is based on the Sobol’ low discrepancy sequences, LPτ sequences [Sobol’,
1967, 1976], because they provide an enhanced convergence rate of the numer-
ical estimators [Chan et al., 2000; Saltelli et al., 2000a, 2004, 2008, 2010]. A better
description of LPτ appealing properties is provided in Section A.3.

2.3 results

2.3.1 Screening results

The sensitivity metric ε gives comparable ranking of the parameters for the
case of vegetation biomass and NPP. Parameters that exert high sensitivity for
NPP, they also do so for vegetation biomass (Figure 2.2 and 2.3). The variability
in the parameter sensitivity induced by different climate forcings is generally
lower in comparison to the variability induced by the parameters themselves.
A subset of 11 potentially critical parameters was identified according to the
ε-based ranking (Figures 2.2, 2.3, and Table 2.4). The parameter selection was
also corroborated by an analysis of other complementary output variables such
as Leaf Area Index, LAI (results not shown).
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From the screening emerges that vegetation carbon assimilation and fluxes show
low sensitivity to hydrological parameters that define and regulate directly or
indirectly the available soil water to plants. Parameters related to the terrestrial
water balance, such as runoff generation (BASEFLOW_FRAC) and percolation
(PERC_BASE, PERC_EXP) have no important effect on the variability of veg-
etation carbon fluxes and pools, especially when compared to biochemical or
biophysical parameters (Figure 2.2 and 2.3). Only soil texture properties, specif-
ically soil water storage capacity (SCC), defined as the difference between vol-
umetric water content at field capacity and volumetric water content at wilting
point multiplied by soil depth is found important. It occurs as the only param-
eter related to the terrestrial water balance that might significantly influence
vegetation carbon sequestration.

Table 2.4: The 11 parameters selected through the screening test, categorized in terms
of simulated processes.

Process Parameters

Vegetation establishment PARFF_MIN

K_LATOSA

TURN_SAP

LtoR_MAX

ALPHA_C3

ALPHA_A

THETA

Mortality GREFF_MIN

Transpiration GM

Water uptake ROOTDIST

Soil hydrology SSC

Plant growth and structure

Photosynthesis

In accordance with Pareto’s principle (Section 2.2.3.2), only 11 parameters, out
of 34 originally examined, were selected after the EE screening analysis (Table
2.4). The importance of these parameters was further investigated by applying
a detailed variance-based GSA that allows us to quantitatively assess parameter
sensitivity and interactions.

2.3.2 Results of variance-based sensitivity analyses

2.3.2.1 First and total Sobol’ sensitivity indices

The distribution of model outputs (mean values over the 44-year historical pe-
riod) for the 6656 model simulations, where the 11 parameters were varied si-
multaneously, under different climatic forcings are illustrated in Figure 2.4. The
annual NPP of each PFT (Figure 2.4b) facilitates the delineation of stand com-
position in terms of dominant and sub-dominant PFTs. In our study, evergreen
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Figure 2.2: Qualitative results of the screening analysis for the total NPP (i.e., vegetation
carbon fluxes). The sensitivity metric ε under different climate conditions is
illustrated. The 11 parameters selected for the detailed analysis are high-
lighted with bold italic characters.
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Figure 2.3: Qualitative results of the screening analysis for the total vegetation biomass
(i.e., vegetation carbon pools). The sensitivity metric ε under different cli-
mate conditions is illustrated. The 11 parameters selected for the detailed
analysis are highlighted with bold italic characters.
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trees can be found between 800 m to 1400 m a.s.l. while deciduous trees occur
from 200 m to 800 m a.s.l. of elevation. The simulated herbaceous PFT occurs
at all the elevation bands and for high elevations (2000 m and 2600 m a.s.l.)
dominates the entire stand, without any woody PFT being present.
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Figure 2.4: Distribution of LAI, NPP, and carbon fluxes for different climatic forcings
(from wet to dry conditions and from low to high elevations), when the 11

selected parameters were varied simultaneously (6656 model evaluations).
LAI (a), annual NPP (b) as well as carbon fluxes (c) for the different ecosys-
tem components are presented. Boxes are extended from 25% lower quartile
(q0.25) to 75% upper quartile (q0.75) while whiskers represent the range of
[q0.5 − 1.5IQR, q0.5 + 1.5IQR], where q0.5 is the median and IQR is the in-
terquartile range (q0.75 − q0.25).

About 50% to 70% (according to the climate forcing) of the variability in total
annual NPP is explained by the uncertainty of ALPHA_C3. Most of this vari-
ability is caused by first order effects (40% to 60%) while only 10% is due to
interactions with other parameters (Figure 2.5). ALPHA_C3 is the parameter
that regulates the initial slope of the light response curve of photosynthesis, rep-
resenting the maximum efficiency of incident light-energy conversion i.e., light
utilization [Haxeltine and Prentice, 1996a, b; Wohlfahrt et al., 1999; von Caemmerer,
2000; Singsaas et al., 2001; Gates, 2003; Bonan, 2008a]. The high sensitivity to
ALPHA_C3 is consistent through the examined precipitation conditions (from
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dry to wet climates), but shows a certain variability across elevation bands due
to variability in vegetation composition (Figure 2.4). At high elevations, e.g.,
2600 m a.s.l., where grass dominates the simulated stand, the importance of
ALPHA_C3 is lower than at 800 m a.s.l., where woody and herbaceous PFTs
co-exist and compete. The second most influential parameter for vegetation car-
bon fluxes is ALPHA_A, i.e., the scaling parameter from leaf to canopy. Roughly
20% of output variability is due to the uncertainty of ALPHA_A. The influence
of ALPHA_A in the variability of NPP is relatively constant across the exam-
ined environmental conditions. Since ALPHA_C3 and ALPHA_A regulate the
efficiency in converting solar radiation to carbon, they essentially control veg-
etation carbon fluxes, causing high variability in model outputs. The parame-
ter PARFF_MIN, which determines establishment for woody, and growth for
herbaceous PFTs, is also a crucial parameter at high elevation (2000 m to 2600

m a.s.l.), where grass tends to dominate the simulated stand. At the elevation
band of 2000 m, where grass is abundant, around 40% of the variability in vege-
tation carbon fluxes is due to the first order effect of ALPHA_C3, while around
30% is induced by the first order effect of PARFF_MIN. At the highest eleva-
tion (2600 m a.s.l.), where grass is the only occurring PFT, ALPHA_C3 is again
the most influential parameter, accounting for 60% of variability in the simu-
lated NPP, of which about 40% is due to first order effects, while 20% is due to
interactions with other parameters. In this non-competitive environment dom-
inated by grass, LtoR_MAX, which affects the partition of below-ground and
above-ground biomass, is of similar importance as PARFF_MIN and ALPHA_A,
causing around 25% of variability in the vegetation carbon fluxes, out of which
10% is due to interactions.

Since there is ample evidence that patch composition affects the model results
(e.g., the performance of the simulated biomes) and therefore the parameter
importance [Tilman et al., 1997; Wramneby et al., 2008], we examined the effects
of parameter uncertainty in the simulated NPP separately for each PFT (Figures
2.6, 2.7, and 2.8).

Comparing parameter sensitivity of the two woody PFTs, coniferous evergreen
(Figure 2.6) and broadleaf deciduous (Figure 2.7), we can highlight different
sensitivity patterns. When competition among PFTs occurs, the model shows
sensitivity to additional parameters since higher order effects start playing a
more important role for the model outcomes. This is particularly evident in
Figures 2.6 and 2.7 where parameters related to plant structure are becom-
ing significantly important in terms of total effects while their first order in-
dices are relatively low, underlining the effect of parameter interactions. At
800 m a.s.l. elevation, where evergreen and deciduous trees co-exist and com-
pete for the same resources, parameters related to plant growth and structure
(TURN_SAP, LtoR_MAX) are becoming influential for coniferous trees (Figure
2.6). Deciduous trees (Figure 2.7), that are sub-dominant at this elevation, i.e.,
they have a significantly lower productivity in comparison to coniferous, show
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Figure 2.5: First and total Sobol’ sensitivity indices of the 11 investigated parameters
with their 95% confidence intervals (vertical lines), for total vegetation NPP
under different climate forcings (from wet to dry conditions and from low
to high elevations).

sensitivity to many parameters controlling their occurrence and growth (e.g.,
ALPHA_C3, K_LATOSA, TURN_SAP, LtoR_MAX, GREFF_MIN) especially in
terms of higher order effects.

The sensitivity of the productivity of grass is also influenced by stand compo-
sition. At low and middle elevations (200 m to 1400 m a.s.l.), where woody
and herbaceous PFTs co-exist, the productivity of grass is mostly sensitive to
PARFF_MIN, which defines a light threshold required for grass to grow (Fig-
ure 2.8). Due to tree shadowing effects, the available Photosynthetically Active
Radiation (PAR) for grass is reduced and PARFF_MIN becomes very critical for
the productivity of grass. The second most influential parameter, responsible
for around 30% of the variance in the simulated NPP of grass, is the maximum
leaf-to-root mass ratio (LtoR_MAX). At higher elevations where grass does not
compete with woody PFTs, the importance of PARFF_MIN and LtoR_MAX sig-
nificantly decreases. Contemporaneously, intrinsic quantum efficiency becomes
the most sensitive parameter, explaining about 50% to 60% of grass NPP vari-
ability (Figure 2.8).
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Figure 2.6: First and total Sobol’ sensitivity indices of the 11 investigated parameters for
the NPP of needle-leaved trees under different climate forcings (from wet to
dry conditions and from low to high elevations). The 95% confidence inter-
vals are also plotted (vertical lines). Constrained by the ascribed bioclimatic
limits, needle-leaved vegetation occurs only between 800 m and 1400 m a.s.l.
elevation.

Finally, intrinsic quantum efficiency is confirmed to be the most important pa-
rameter for the total carbon stored by vegetation under all the climate forcings
(Figure 2.9), independent of patch composition. ALPHA_C3 alone explains 50%
to 60% of the variability in the vegetation carbon pools. ALPHA_A also shows a
consistent influence on the output variability across all the elevation bands with
a total order effect of ≈ 0.2. However, the second most important parameter for
the carbon stored in vegetation pools, when the simulated stand is occupied by
woody PFTs (200 m to 1400 m a.s.l. elevation), is TURN_SAP, which defines the
conversion rate between sapwood and heartwood. At high elevations, where
grass occupies the entire tile, PARFF_MIN becomes the second most important
parameter after ALPHA_C3.

2.3.2.2 Sobol’ GSA excluding photosynthesis-related parameters

The strong sensitivity of LPJ-GUESS to the parameterization of photosynthesis
scheme may hide the importance of other parameters and processes. Thus, in
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Figure 2.7: First and total Sobol’ sensitivity indices of the 11 investigated parameters for
the NPP of broad-leaved trees under different climate forcings (from wet to
dry conditions and from low to high elevations). The 95% confidence inter-
vals are also plotted (vertical lines). Constrained by the ascribed bioclimatic
limits, broad-leaved vegetation occurs only between 200 m and 800 m a.s.l.
elevation.

order to consolidate our findings and investigate any potential damping effect
in the parameter ranking caused by the overwhelming contribution of intrin-
sic quantum efficiency, we repeated the GSA by excluding parameters related
to photosynthesis. Specifically, ALPHA_C3, ALPHA_A, and THETA were fixed
to their standard values (Table 2.3), and the first and total Sobol’ sensitivity
indices were calculated for the 8 remaining parameters. By excluding the pho-
tosynthesis parameters, the importance of light harvesting and plant-structure
parameterization were further scrutinized and the low sensitivity of soil water
content was also reconfirmed.

Figure 2.10 shows the distribution of the 44-year average values of LAI, NPP,
and carbon fluxes. The stand composition is similar as in Figure 2.4, where pho-
tosynthesis parameters were included in the analysis. However, the distribution
of the output is narrower and with less dispersion. There is no important varia-
tion in the examined output and stand composition with the different precipita-
tion patterns (Figure 2.10), i.e., Sobol’ sensitivity indices are similar under dry,
normal and wet conditions. Therefore, results are illustrated only for the case of
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Figure 2.8: First and total Sobol’ sensitivity indices of the 11 investigated parameters
for the NPP of grass, under different climate forcings (from wet to dry con-
ditions and from low to high elevations). The 95% confidence intervals are
also plotted (vertical lines).

normal precipitation forcing (Figures 2.11 and 2.12). Coxcomb plots, which are
essentially bar charts in polar coordinates, were used to summarize the param-
eter ranking of the different stand compositions. Total Sobol’ sensitivity indices
of the examined parameters are depicted for the elevation bands where each
PFT is predominant in the simulated stand (TBS at 200 m a.s.l., NE at 1400 m
a.s.l, and GRS at 2000 m a.s.l), and for the elevation band of 800 m a.s.l., where
all the PFTs co-exist and compete (Figures 2.11 and 2.12).

The parameter LtoR_MAX is found to be very important for the vegetation car-
bon fluxes, independent of stand composition (Figure 2.11a, b). At the elevation
of 200 m a.s.l. where TBS is the dominant PFT, PARFF_MIN is the most impor-
tant parameter explaining 60% of the variability in NPP and LtoR_MAX is the
second most important with a total order sensitivity index ≈ 0.4. At 2000 m a.s.l,
where the entire stand is covered by grass, the sensitivity patterns are similar,
PARFF_MIN explains most of the variability in vegetation carbon fluxes and
LtoR_MAX is the second most important parameter. At the elevation of 800 m
a.s.l., where the two woody PFTs and grass co-exist (NE is the dominant PFT
and TBS the sub-dominant), LtoR_MAX is the most critical parameter, with a
total order sensitivity index ≈ 0.6.
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Figure 2.9: First and total Sobol’ sensitivity indices of the 11 investigated parameters
with their 95% confidence intervals (vertical lines) for the vegetation carbon
pools (sum of the carbon allocated in leaves, sapwood, heartwood and fine
roots) under different climate forcings.

For the vegetation biomass (vegetation carbon pools, Figure 2.11c, d), param-
eters regulating plant structure and mortality, TURN_SAP and GREFF_MIN
respectively, are the most important parameters for the elevation bands where
woody PFTs are dominant (200-1400 m a.s.l.). GREFF_MIN is the most sen-
sitive parameter for vegetation carbon pools when only TBS trees occur and
TURN_SAP is the second most important. For stands with only NE trees,
TURN_SAP is the most sensitive parameter and GREFF_MIN is the second
most sensitive. When grass is the only PFT that occurs in the simulated stand,
PARFF_MIN is found to be the most important parameter (Figure 2.11c). At
the elevation of 800 m a.s.l., TURN_SAP, GREFF_MIN, and LtoR_MAX emerge
as the most influential parameters, as a result of the co-existence of different
PFTs.

Summarizing, despite some differences due to stand composition, the parameter
ranking is fairly similar for the vegetation carbon fluxes and pools under the en-
tire spectrum of the used climate forcings. PARFF_MIN and LtoR_MAX are the
most influential parameters for NPP under all the examined stand compositions.
For the vegetation carbon pools TURN_SAP, GREFF_MIN, and LtoR_MAX are
the three key parameters when woody PFTs occur. When the simulated stand is



2.3 results 33

dry normal wet

(a) Leaf Area Index [-] (c) Carbon fluxes [kgC/m /yr](b) Annual Net Primary Production [kgC/m /yr]

NE

TBS

GRS

Vegetation

Soil

Net 

Ecosystem 

Exchange

Climate conditions (precipitation)

dry normal wet

Climate conditions (precipitation)

dry normal wet

Climate conditions (precipitation)

2 2

NE

TBS

GRS

200 m

800 m

1400 m

2000 m

2600 m

200 m

800 m

1400 m

2000 m

2600 m

200 m

800 m

1400 m

2000 m

2600 m

0 5 10 15 20

0 5 10 15 20

200 m

800 m

1400 m

2000 m

2600 m

200 m

800 m

1400 m

2000 m

2600 m

200 m

800 m

1400 m

2000 m

2600 m

0.0 0.5 1.0 1.5 2.0

0.0 0.5 1.0 1.5 2.0

200 m

800 m

1400 m

2000 m

2600 m

200 m

800 m

1400 m

2000 m

2600 m

200 m

800 m

1400 m

2000 m

2600 m

−2 −1 0 1 2

−2 −1 0 1 2

E
le

v
a

ti
o

n
 b

a
n

d
s

Figure 2.10: Distribution of LAI, NPP, and carbon fluxes for different climatic forcings,
when the 8 remaining parameters, after removing photosynthesis parame-
terization from the GSA, were varied simultaneously (5120 model evalua-
tions). LAI (a), annual NPP (b), as well as carbon fluxes (c) for the different
ecosystem components are presented. Boxes are extended from 25% lower
quartile (q0.25) to 75% upper quartile (q0.75) while whiskers represent the
range of [q0.5 − 1.5IQR,q0.5 + 1.5IQR], where q0.5 is the median and IQR
is the interquartile range (q0.75 − q0.25).

only covered by herbaceous species, PARFF_MIN is the most important param-
eter.

Contrary to what we found for vegetation carbon fluxes and pools, the sensitiv-
ity metrics at the PFT level, e.g., NPP and LAI of each specific PFT, are strongly
conditioned by stand composition. Total sensitivity indices for NPP and LAI of
the 8 examined parameters of NE, TBS, and GRS are illustrated in Figure 2.12

for the different stand compositions and normal precipitation conditions. When
only one PFT occurs in the simulated stand, there are very few parameters that
essentially affect the PFT specific model outputs (Figure 2.12a, c), while at the
800 m a.s.l. elevation band where all the simulated PFTs co-exist, many param-
eters become influential, affecting NPP and LAI of each PFTs (Figure 2.12b, d).
When woody PFTs occupy the entire stand, K_LATOSA and LtoR_MAX, are
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Figure 2.11: Coxcomb plots of the total effect sensitivity indices for vegetation carbon
fluxes, subplots (a) and (b), and vegetation carbon pools, subplots (c) and
(d). Total effect sensitivity indices are reported for the three different eleva-
tion bands where each of the simulated PFT is the dominant (TBS at 200 m
a.s.l., NE at 1400 m a.s.l, and GRS at 2000 m a.s.l.) under normal precipita-
tion conditions, subplots (a) and (c), as well as for the elevation band where
all the PFTs co-exist (800 m a.s.l.), subplots (b) and (d).

of paramount importance. However, the examination of elevation bands where
competition among PFTs takes place, led to the identification of additional cru-
cial parameters. Especially for broad-leaved trees, which are sub-dominant at
800 m a.s.l., the total sensitivity indices of most of the parameters are higher
when compared to needle-leaved trees that dominate the forest stand. For grass,
PARFF_MIN is the most sensitive parameter independent of forest stand com-
position, but the sensitivity is higher in the presence of trees. Trees reduce the
amount of radiation that penetrates the canopy and reaches the forest-floor and
thus light becomes the limiting factor for grass growth. Grass is also strongly
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influenced by the maximum leaf-to-root mass ratio (LtoR_MAX), especially at
high elevations.
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Figure 2.12: Coxcomb plots of the total effect sensitivity indices for NPP, subplots (a)
and (b), and LAI, subplots (c) and (d). Total effect sensitivity indices of
NPP and LAI are reported for the three different elevation bands where
each of the simulated PFT is the dominant (TBS at 200 m a.s.l., NE at 1400

m a.s.l, and GRS at 2000 m a.s.l.) under normal precipitation conditions,
subplots (a) and (c), and for the elevation band where all the PFTs co-exist
(800 m a.s.l.), subplots (b) and (d).

2.4 discussion

The results described in the previous sections provide a thorough evaluation
of LPJ-GUESS terrestrial ecosystem model. For the first time, advanced sensi-
tivity analysis methodologies are applied to a DGVM for estimating not only
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the sensitivity to different parameters, but also for better understanding the
importance of the model structure. Since it is widely accepted that mimicking
the reality should imply more than a simple agreement with observed variables
[Weisberg, 2007], especially when long term or climate non-stationary quanti-
tative predictions are envisioned [Cox et al., 2006; Evans, 2012], such a type of
model evaluation is fundamental.

2.4.1 Sensitivity to photosynthesis and plant growth

The Farquhar photosynthesis scheme [Farquhar et al., 1980; Collatz et al., 1991]
turned out to include the most sensitive out of the 34 examined model parame-
ters of LPJ-GUESS, in particular the intrinsic quantum efficiency. In agreement
with the results of Zaehle et al. [2005], intrinsic quantum efficiency is of utmost
importance in the LPJ-GUESS parameterization, explaining most of the variabil-
ity in vegetation carbon fluxes and pools, regardless of stand composition and
climate forcings. The essential role of photosynthesis parameterization in con-
trolling the terrestrial ecosystem carbon budget has also been detected in other
modeling studies [Hallgren and Pitman, 2000; Medlyn et al., 2005; Zaehle et al.,
2005; Alton et al., 2007; Matthews et al., 2007; Chen et al., 2011; Bonan et al., 2011;
Dietze et al., 2011]. Specifically, maximum capacity for carboxylation has been
found to be a key plant physiological parameter which can strongly influence
not only photosynthesis but also the global climate [Bonan et al., 2011].

This critical role of the process of photosynthesis in controlling long-term vege-
tation carbon fluxes and pools (responsible for about 60% of output variability
in the case of LPJ-GUESS) is contradicted by field experiments, which suggest
that photosynthesis may be a consequence rather than a driver of plant growth
[Körner, 2003a; Zweifel et al., 2006; Muller et al., 2011; Hoch and Körner, 2012]. Thus,
the generally simplistic and mostly static carbon allocation schemes of DGVMs
[e.g., Shinozaki et al., 1964; Huang et al., 1992; Zeide, 1993] create high sensitivity
of plant growth to photosynthesis, neglecting processes such as direct growth
limitation by temperature [Oberhuber et al., 2011; Hoch and Körner, 2012; Korner,
2012] or water [Würth et al., 1998; Muller et al., 2011]. We acknowledge the fun-
damental role of photosynthesis in controlling short-term carbon fluxes and in
this regard more accurate representations of canopy layers, leaf temperature,
and light harvesting can be very important [e.g., De Pury and Faruhar, 1997; Dai
et al., 2004; Kobayashi et al., 2012]. However, we underline that forest growth and
development (and therefore long-term carbon fluxes) result from complex in-
teractions and should not be dominated by the process of photosynthesis. For
instance, the importance of plant structure and architecture in determining car-
bon assimilation has been recognized recently [Luyssaert et al., 2008; Ishii and
Asano, 2010; Hardiman et al., 2011] and is confirmed by our GSA with fixed pho-
tosynthesis parameters. Overall, we suggest that these contradictions call for
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a more mechanistic representation of carbon allocation and translocation [e.g.,
carbon sink rather than carbon source driven, Leuzinger et al., 2013] and it rep-
resents one of the key challenges for future model improvements [Hurtt et al.,
1998; Daudet et al., 2002; Litton et al., 2007; Fisher et al., 2010; De Schepper and
Steppe, 2011; Franklin et al., 2012; Mäkelä, 2012; Sala et al., 2012].

2.4.2 Photosynthesis in the LPJ model family

LPJ-GUESS (as well as LPJ-DGVM), originates from the BIOME model fam-
ily [Prentice et al., 1992; Haxeltine and Prentice, 1996a; Haxeltine et al., 1996]. In
these models, the implemented photosynthesis scheme, for both C3 and C4
species, is based on a simplified mechanistic approach [Farquhar et al., 1980;
Collatz et al., 1991, 1992], that allows for an analytical solution as demonstrated
by Haxeltine and Prentice [1996a, b] and Haxeltine et al. [1996]. Net photosynthesis
and stomatal conductance are calculated at a daily time scale using a non rect-
angular hyperbola formulation describing the transition between light-limited
and Rubisco limited photosynthesis rates [Haxeltine and Prentice, 1996b; Cannell
and Thornley, 1998]. However, the analytical expressions of daily photosynthesis
emerge from the assumption that for any PAR level there is an optimal photosyn-
thetic enzyme activity that maximizes net photosynthesis [Haxeltine and Prentice,
1996a, b]. Specifically, the canopy-average maximum Rubisco capacity (Vmax)
of each simulated average individual, is not predefined, as it is required by
the original Farquhar photosynthesis scheme and implemented in other models
[e.g., Knorr, 2000; Krinner et al., 2005; Bonan et al., 2011; Ivanov et al., 2008a; Fatichi
et al., 2012a], but it is adjusted daily in an optimal way, under the assumption
that leaf nitrogen distribution through the canopy maximizes daily canopy net
assimilation. This optimality constraint is likely responsible for the strong sensi-
tivity of LPJ-GUESS to ALPHA_C3. In LPJ-GUESS, ALPHA_C3 represents more
than intrinsic quantum efficiency and does not only affect the light-induced car-
bon fixation [Equation 2 and 4 in Haxeltine and Prentice, 1996a]. Therefore, vari-
ations in ALPHA_C3, indirectly affect the optimized value of Vmax [Equation
11 in Haxeltine and Prentice, 1996a], and this sequentially affects the Rubisco-
limited assimilation [Equation 5 in Haxeltine and Prentice, 1996a]. In other words,
the optimization procedure, applied for obtaining analytical solutions of daily
photosynthesis, implies that the uncertainty originally attributed to the intrinsic
quantum efficiency, also reflects the uncertainty propagated by the internal ad-
justment of Vmax. Therefore, the biochemical processes of photosynthesis and
specifically the light use efficiency of plants (mediated by the intrinsic quantum
efficiency parameter and entailing Vmax variation as well) is found to be the
cornerstone of LPJ-GUESS framework.

Given the computational cost of concurrently solving processes involved in
plant photosynthesis, namely water and energy exchanges, analytical solutions
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of this highly non-linear system have been provided through optimization as-
sumptions. Despite the appeal of finding analytical solutions of plant photosyn-
thesis processes [Baldocchi, 1994; Lloyd et al., 1995; De Pury and Faruhar, 1997;
Baldocchi and Amthor, 2001], this study suggests that optimality assumptions
might be too simplistic leading to undesirable sensitivity confined to few pa-
rameters.

2.4.3 Sensitivity to soil moisture

According to our extensive analysis, both with (Section 2.3.2.1) and without
(Section 2.3.2.2) photosynthesis-related parameters, the model has a very low
sensitivity, in relation to the vegetation outcomes (e.g., biomass, NPP, LAI), to
parameters controlling the terrestrial water balance (Figure 2.13). This contra-
dicts empirical evidence that emphasizes the effect of water availability on pri-
mary production [e.g., Beer et al., 2010; Reichstein et al., 2007]. While it is true
that Swiss climate is rather wet, the lack of sensitivity to values of SCC, which
directly defines the available water to plants, is also evident in the dry alpine cli-
mate regime of Sion, where water controls have shown to be important [Zweifel
et al., 2007].

The lack of sensitivity to water is likely ascribed to both an inaccurate rep-
resentation of water stress effects on vegetation functioning (photosynthesis,
autotrophic respiration, carbon allocation) that are still not fully understood
[Tezara et al., 1999; Tuzet et al., 2003; Zweifel et al., 2006; Vico and Porporato, 2008;
Lawlor and Tezara, 2009; Keenan et al., 2010; McDowell, 2011; Tardieu et al., 2011],
and to the simplistic approach used by LPJ-GUESS and several other DGVMs
in representing soil hydrology [Pitman, 2003; Jung et al., 2007b]. Specifically, the
“bucket model" assumption which is implemented in LPJ-GUESS (and in many
other DGVMs) [Haxeltine and Prentice, 1996a; Neilson, 1995; Gerten et al., 2004],
might lead to unreliable model results, especially for the case of dry climates,
reducing the importance of water limitations [Churkina et al., 1999; Gordon et al.,
2004; Matthews et al., 2007; Morales et al., 2007; Jung et al., 2007a; Dietze et al.,
2011; Wood et al., 2011]. More detailed approaches for computing surface and
soil water dynamics in an ecohydrological framework [e.g., Ivanov et al., 2008a;
Hwang et al., 2009; Fatichi et al., 2012a] or at the tree scale [e.g., Bohrer et al., 2005;
Janott et al., 2010; Bittner et al., 2012] might improve the simulation of carbon
and water fluxes especially in arid and semiarid regimes [Hanan et al., 1998; Law
et al., 2000; Baldocchi and Wilson, 2001; Ivanov et al., 2008b; Quillet et al., 2010;
Fatichi et al., 2012b]. In these ecosystems, DGVMs are prone to a poorer per-
formance when compared to temperature-limited northern ecosystems [Smith
et al., 2001; Hickler et al., 2004; Morales et al., 2005, 2007; Jung et al., 2007a; Keenan
et al., 2011b], illustrating that moisture availability is not a primary driver of
their performance [Churkina et al., 1999; Matthews et al., 2007].
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Figure 2.13: Total order sensitivity index of the subset of 8 examined parameters with
the different GSA experiments, including (photosynthesis on) and exclud-
ing (photosynthesis off) parameters related to the Farquhar photosynthe-
sis parameterization (ALPHA_C3, ALPHA_A and THETA). The median of
Sobol’ total order sensitivity indices over the 15 examined climatic forcings
is plotted.

A more mechanistic representation of plant-water relationships should be thus
embedded in the current model frameworks of DGVMs. This implies not only
a better coupling of the intertwined dynamics of photosynthesis, stomatal reg-
ulation, and transpiration but also an explicit modeling of water controls on
biochemical process, carbon transport, and plant growth as well as a better rep-
resentation of the driving force, i.e., soil moisture temporal and spatial variabil-
ity.

2.4.4 Sensitivity to stand composition

The role of stand composition in assessing model sensitivity was demonstrated
to be of noticeable importance. The importance of certain parameters with re-
gard to PFT-specific outputs is different when compared to the overall parame-
ter sensitivity for the entire stand, highlighting that parameter importance can
be strongly affected by the composition of the simulated stand [Wramneby et al.,
2008]. Especially parameters controlling the capability of vegetation biomes to
establish and grow become very critical when multiple PFTs compete for the
same resources and might undergo stress. As the number of co-existing PFTs
in a patch increases, the interactions among parameters also increases leading
to a highly susceptible non-linear system where small variations in the model
parameterization may cause considerable differences in the final vegetation com-
position.

The broad-leaved trees are found more sensitive to different parameterizations,
in comparison to needle-leaved trees. This is probably attributed to a different
phenology of deciduous PFTs and partially explain the fact that DGVMs are
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able to simulate evergreen phenology (LAI cycle) and interannual productivity
better than the phenology of deciduous trees which is characterized by a strong
seasonal variability [Morales et al., 2005; Kucharik et al., 2006; Jung et al., 2007a;
Richardson et al., 2011].

The increasing sensitivity to parameterization as a result of a more heterogenous
forest highlights another important challenge for DGVMs. Since the simulated
species competition is strongly dependent on the choice of the parameters, the
robustness of future projections of carbon fluxes might be questionable, espe-
cially for conditions different from the ones where parameter values are esti-
mated.

2.5 conclusions

Global Sensitivity Analysis is a very powerful tool for pinpointing principal
mechanisms of model functioning and for highlighting critical aspects of model
parameterization and structure. Using this framework, we could show that veg-
etation carbon fluxes and pools simulated by LPJ-GUESS are highly sensitive to
parameters related to photosynthesis, especially to intrinsic quantum efficiency.
At the same time, the sensitivity to parameters controlling water availability was
found to be very low. Both of these results tend to be in contradiction with recent
evidence showing that photosynthesis is not the primary driver of growth while
plant-water relations are fundamental. We therefore argue that future amend-
ments of DGVMs should concentrate on a more mechanistic representation of
plant water relations and carbon trans- and allocation. This, together with an
adequate parameterization of plant functional traits will allow for a better un-
derstanding of terrestrial carbon cycle.
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abstract

The coarse-grained spatial representation of many terrestrial ecosystem mod-
els hampers the importance of local scale heterogeneities. To address this issue,
we combine a range of observations (forest inventories, eddy flux tower data,
remote sensing products) and modeling approaches with contrasting degrees
of abstraction. The following models are selected: (i) LPJ, a well-established,
area-based, Dynamic Global Vegetation Model (DGVM); (ii) LPJ-GUESS, a hy-
brid, individual-based approach that additionally considers plant population
dynamics in greater detail; and (iii) D-LPJ, a spatially explicit version of LPJ,
operating at a fine spatial resolution (100 m × 100 m), which uses an enhanced
hydrological representation accounting for lateral connectivity of surface and
subsurface water fluxes. By comparing model simulations with a multivariate
dataset available at the catchment scale, we argue that: (i) local environmen-
tal and topographic attributes that are often ignored or crudely represented in
DGVM applications exert a strong control on terrestrial ecosystem response; (ii)
the assumption of steady-state vegetation and soil carbon pools at the beginning
of simulation studies (e.g., under “current conditions”), as embedded in many
DGVM applications, is in contradiction with the current state of many forests
that are often out of equilibrium; (iii) model evaluation against vegetation car-
bon fluxes does not imply an accurate simulation of vegetation carbon stocks.
Having gained insights about the magnitude of aggregation-induced biases due
to smoothing of spatial variability at the catchment scale, we discuss the im-
plications of our findings with respect to the global scale modeling studies of
carbon cycle and we illustrate alternative ways forward.

3.1 introduction

The Earth’s carbon balance and its variability under changing climatic condi-
tions and anthropogenic disturbances are topics of great societal and scien-
tific importance [e.g., Le Quéré et al., 2009, 2013; Regnier et al., 2013]. Terrestrial
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ecosystems often undergo state transitions imposed by climate variability, an-
thropogenic interventions and/or natural disturbances [e.g., Bonan, 2008b; Luo
and Weng, 2011]. However, understanding and modeling these trajectories still
remain very challenging [Levin et al., 1997; Hurtt et al., 1998; Schellnhuber, 1999;
Landsberg, 2003; Moorcroft, 2006; Purves and Pacala, 2008b; Evans et al., 2012; Pap-
pas et al., 2013]. A bulk of numerical representations, with different degrees of
abstraction, has been developed to mimic complex terrestrial ecosystem pro-
cesses across different scales [see Martin, 1993; Perry and Enright, 2006; Jeltsch
et al., 2008; Levis, 2010, for extensive reviews]. Dynamic Global Vegetation Mod-
els [DGVMs; Prentice et al., 2000; Quillet et al., 2010] are among the most widely
used tools, not only in global carbon cycle research, but also as integrated part
in Earth System Models [e.g., Cox et al., 2000; Prinn, 2012].

The embedded physical mechanisms and causalities allow DGVMs to operate
across a wide range of spatial scales, e.g., from the footprint of eddy flux towers,
where their performance is often assessed, to global scale applications, where
local parameterizations are extrapolated to larger domains. While the process-
based framework of DGVMs makes them very appealing for analyzing future
scenarios, any model-based inference is strongly conditioned on their underly-
ing assumptions. Therefore, it is important to investigate whether the causal
relations incorporated in these models mimic realistically the observed vegeta-
tion dynamics and whether the effects of a spatially heterogeneous vegetation
are correctly reproduced. The importance of spatial heterogeneities has been rec-
ognized recently for ecosystem carbon budgets at the regional scale (Zhao and
Liu [2014], but see Hall et al. [2015]), and when terrestrial carbon, energy, and
water fluxes are simulated with land surface models [e.g., Li et al., 2013; Melton
and Arora, 2014], but has not yet been properly quantified for DGVMs.

In the present study, we combine a range of observations and modeling ap-
proaches for assessing the importance of spatial representation in forest-growth
dynamics at the catchment scale. By analyzing the problem of terrestrial ecosys-
tem modeling in a well-restricted domain, such as the catchment area, where
multivariate datasets are available, rather than at the continental or global scale,
where DGVMs often operate, a better assessment of the strengths and weak-
nesses of the models is expected. In addition, the regional and catchment scales
represent scales at which management decisions are taken [e.g., Korzukhin et al.,
1996; Mäkelä et al., 2000]. We focus on comparing different approaches for treat-
ing spatial vegetation heterogeneities. More specifically, three terrestrial ecosys-
tem models with different degrees of abstraction and spatial representation of
vegetation are applied: (i) LPJ [Sitch et al., 2003], a well established DGVM (sec-
tion 3.2.1.1); (ii) LPJ-GUESS [Smith et al., 2001], a hybrid approach that incorpo-
rates a mechanistic description of population dynamics into DGVMs (section
3.2.1.1); and (iii) D-LPJ, that is presented for the first time in this study (sec-
tion 3.2.1.2) and consists of a spatially explicit version of LPJ operating on a
fine resolution grid, which is distributed in space and accounts for lateral water
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fluxes among the simulated grid cells through an enhanced hydrological rep-
resentation. The experimental setup is designed to preserve commonly applied
practices in each modeling approach (section 3.2.5).

By comparing model simulations with multiple observed variables, the follow-
ing questions are addressed: (i) which is the role of landscape heterogeneity
(e.g., local climate, topography) in terrestrial ecosystem modeling? (ii) Does the
simulated ecosystem response obtained averaging out subgrid heterogeneities,
as is typically done in LPJ or LPJ-GUESS simulations (i.e., f(X), where f is a
model, X the ecosystem properties, and the overline denotes averaging oper-
ator), correspond to the mean simulated response of the system when spatial
heterogeneities are explicitly taken into account, as done in D-LPJ simulations
(i.e., f(X))? By answering these questions, we provide an explicit quantifica-
tion of the potential biases in DGVMs applications, due to smoothing of local
heterogeneities, induced by aggregation (f(X) versus f(X)), as well as detailed
explanations for their mismatch. In addition, building upon our findings at the
catchment scale, we investigate implications for the modeling of global carbon
cycle, where similar tools are often applied without scrutiny of underlying as-
sumptions.

3.2 methodology

3.2.1 Models

3.2.1.1 Ecosystem models: LPJ and LPJ-GUESS

LPJ (Lund-Potsdam-Jena) Dynamic Global Vegetation Model [Sitch et al., 2003]
and LPJ-GUESS (Lund-Potsdam-Jena General Ecosystem Simulator; Smith et al.
[2001]) are established terrestrial ecosystem models. Many studies have been
published showing their skills in predicting potential natural vegetation and
primary production at global and regional scales [e.g., Badeck et al.; Hickler et al.,
2004; Koca et al., 2006; Smith et al., 2008; Ahlström et al., 2012; Tang et al., 2012; Piao
et al., 2013]. Both models are not spatially explicit but provide lumped, area-
averaged representations (i.e., f(X), following the symbolism introduced in the
previous section).

LPJ and LPJ-GUESS share the same process-oriented representation of plant
physiology and ecosystem biogeochemistry, but have different approaches for
simulating the distribution of vegetation. In LPJ vegetation within a grid cell
is described in terms of fractional coverage of different Plant Functional Types
(PFTs) and each simulated PFT reflects average properties of the entire popu-
lation (e.g., tree height, vegetation carbon pools; population-based approach).
In LPJ-GUESS forest dynamics and local scale vegetation heterogeneities are



46 heterogeneities and ecosystem modeling

approximated following a gap-model approach [Bugmann, 2001] accounting for
ecosystem demography: forest structure is represented by averaging several spa-
tially independent patches (100 patches in the current model configuration) of
PFTs with different age classes (cohorts; individual-based approach) [Smith et al.,
2001]. The use of several replicated patches accommodates for the variability in-
duced by stochastic processes, such as plant establishment and mortality.

Photosynthesis, respiration, stomatal regulation, plant phenology and soil bio-
geochemistry are simulated at the daily scale while processes related to for-
est successional dynamics such as plant growth, establishment, and mortality
are computed at the annual scale. Fire disturbances are disabled in the current
study. Only a generic background mortality represented by stochastic distur-
bances (e.g., storms, diseases) is instead considered. Soil hydrological processes
are modeled at the daily scale with a simple “bucket” hydrological model and
do not consider lateral flows, as detailed in Gerten et al. [2004]. The meteoro-
logical forcings are daily values of precipitation, temperature, and radiation,
and annual values of CO2 concentration. Instead of the commonly used generic
PFTs, a species-based parameterization of European biomes, proposed by Hick-
ler et al. [2012], is adopted. To better capture Swiss vegetation functioning, some
plant physiological parameters are also adjusted, such that data from Swiss
eddy covariance flux measurements are better simulated (see Section 3.2.4.1 as
well as the detailed discussion in Section B.3). Detailed model descriptions of
LPJ and LPJ-GUESS are provided in Sitch et al. [2003] and Smith et al. [2001],
respectively.

Since vegetation grows dynamically in both LPJ and LPJ-GUESS, each model
simulation started with no vegetation (bare ground). An initialization period
(equal to 500 years in our study) is used to spin-up the model and reach a state
where carbon pools and vegetation cover are in equilibrium with the historical
climatic conditions. The climate forcings used for spinning-up the model are
constructed by repeating randomly years of the observed climate and using the
preindustrial CO2 levels. The use of a spin-up period to initialize vegetation
and soil carbon pools represents a common and unavoidable step in DGVM
applications [Pietsch and Hasenauer, 2006; Carvalhais et al., 2008; Williams et al.,
2009].

3.2.1.2 Ecohydrological scheme: D-LPJ

D-LPJ (“D” stands for distributed in space) is a novel ecohydrological scheme
built upon state-of-the-art ecological and hydrological tools. It combines the LPJ
process-based vegetation model, which mimics short- and long-term vegetation
dynamics, with the TOPKAPI-ETH hydrological model, which mechanistically
simulates soil and surface water dynamics. The coupling strategy incorporated
in the D-LPJ scheme is illustrated in Figure 3.1.
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Figure 3.1: Representation of the D-LPJ ecohydrological scheme. D-LPJ is based on an it-
erative coupling of the LPJ ecosystem model with the TOPKAPI-ETH hydro-
logical model. LPJ provides an estimate of evapotranspiration fluxes (ETA;
soil evaporation, evaporation from interception, and plant transpiration) to
TOPKAPI-ETH which then feeds back to LPJ an estimate of the soil water
content (SWC), snow pack (SP), and snow melt (SM). Several iterations of the
exchange variables (ETA and SWC, SP, SM) are performed until convergence
of estimated fluxes over the simulated area is achieved.

TOPKAPI-ETH is a spatially explicit hydrological model that originates from
the TOPKAPI (TOpographic Kinematic APproximation and Integration) rainfall-
runoff model [Ciarapica and Todini, 2002; Liu and Todini, 2002]. The process-based
framework of the model allows for a detailed spatial and temporal representa-
tion of the major hydrological processes at the catchment scale, accounting not
only for runoff generation and routing but also for evapotranspiration, snow,
and glacier dynamics [e.g., see Paschalis et al., 2014, for a recent application
of TOPKAPI-ETH on catchment flood response]. Spatial heterogeneity is rep-
resented by discretizing the domain as a fine-resolution regular grid, while
the temporal dynamics of the hydrological processes are solved at an hourly
time-step. The meteorological input variables are hourly values of precipitation
and temperature and daily cloud cover transmissivity. The shortwave radiation
fluxes are computed internally, accounting for topographic effects, based on
clear-sky radiation [Bird and Hulstrom, 1981; Iqbal, 1983], skyview factor and ter-
rain shading [Corripio, 2003], cloud cover transmissivity, and surface albedo. The
spatially distributed nature of TOPKAPI-ETH facilitates a high-resolution rep-
resentation of topography. Different computational elements are connected in
the surface and in the subsurface according to topographic gradients. A kine-
matic wave approximation is applied to route water in the surface, sub-surface,
and channels [Liu and Todini, 2005]. Three soil layers are used for mimicking the
vertical soil-water dynamics; the first two (schematized as non-linear reservoirs)
represent shallow and deep soil horizons, while the third layer (schematized as
a linear reservoir) represents slow flow components, such as groundwater.

D-LPJ operates in a spatially explicit mode. Precipitation, temperature, and radi-
ation fields are used to drive LPJ at a daily time step. The original hydrological
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module of LPJ is used for estimating soil- and snow-water dynamics only dur-
ing the spin-up period. Once the spin-up period is completed, distributed fields
of soil water content, snow melt, and snowpack, computed with TOPKAPI-ETH,
are provided as input to LPJ. When a simulation of LPJ is completed, distributed
evapotranspiration fluxes (soil evaporation, plant transpiration, and evapora-
tion from interception) are fed-back to TOPKAPI-ETH. Several iterations are
conducted until a convergence of the exchange state variables is achieved (evap-
otranspiration fluxes and soil water content; Figure B.1). This information is
exchanged at the end of the simulation period, i.e., 10 years in the present study.
Contrary to the approach of using potential natural vegetation of LPJ and LPJ-
GUESS, as well as of most DGVM applications, for obtaining the vegetation
cover of the examined area, a land use map is imposed on D-LPJ in order to
prescribe a realistic vegetation distribution over the simulated domain.

In summary, when compared to the original, area-averaged, lumped watershed
representations of LPJ and LPJ-GUESS, D-LPJ includes (i) distributed vegetation
cover based on the current land use map, (ii) spatially explicit topographic and
meteorological attributes, defined on a fine resolution grid, (iii) refined soil-
moisture dynamics computed with a spatially explicit hydrological module that
solves the lateral connectivity of surface and subsurface water fluxes (see Table
3.1).

Table 3.1: Summary of the model configurations used for the numerical experiments.
Model settings are assigned based on typical practices, i.e., coarse resolution
for LPJ and LPJ-GUESS and a spatially explicit representation for D-LPJ.
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3.2.2 Case study

The Kleine Emme basin is located in the central part of Switzerland, on the
northern edge of the Alps (Figure 3.2). It covers about 477 km2 with an average
elevation of 1050 m a.s.l., ranging from 2329 m a.s.l. on the southern edge to
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431 m a.s.l. at the catchment outlet (Littau; 47◦4′0.1′′ N, 8◦17′2.6′′ E). Most of
the catchment area is covered by forest and grassland (Figure 3.4). The long-
term (from January 2000 to December 2009) precipitation and air temperature
averaged over the entire catchment are 1650 mm yr−1 and 7.7 ◦C respectively
(Figure 3.3). The river flow is unregulated with a mean discharge at the outlet
of about 1023 mm yr−1.
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Figure 3.2: The Kleine Emme catchment is located in the central part of Switzerland.
Three stream gauges operate in the main river network (blue circles) and
three meteorological stations (red circles) with high quality temperature and
radiation measurements are located close to the catchment boundaries.

3.2.3 Input data

3.2.3.1 LPJ and LPJ-GUESS input variables

Assigning mean meteorological and topographic properties over a large area is
a common practice for simulations with LPJ and LPJ-GUESS since they are typi-
cally used for regional or global scale applications with relatively coarse spatial
resolution. Accordingly, daily values of spatially averaged meteorological vari-
ables (precipitation, temperature, radiation) available in the Kleine Emme re-
gion, are used for the simulations with LPJ and LPJ-GUESS (see section 3.2.3.2
and Figure 3.3). Annual values of atmospheric CO2 concentrations are derived
from ice core reconstructions [Sitch et al., 2003; Frank et al., 2010] and the Mauna
Loa record [Keeling et al., 2009]. Mean soil properties are also prescribed follow-
ing the FAO global soil map [FAO, 1991].
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3.2.3.2 D-LPJ input variables

For the hydrological component of D-LPJ, meteorological forcings as well as to-
pographic, land cover, and soil data should be provided for each computational
element, since TOPKAPI-ETH is spatially explicit. In the present model setup
a regular grid of 100 m × 100 m resolution is used to account for spatial het-
erogeneity, resulting in a total of 47707 computational elements over the Kleine
Emme catchment.
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Figure 3.3: Spatial distribution (100 m × 100 m resolution) of mean daily (a) precipita-
tion, (b) temperature, and (c) radiation, averaged over the examined period
(January 2000 to December 2009) for the Kleine Emme catchment. Inner plots
illustrate the areal probability density function with the areal mean denoted
by a continuous red line. D-LPJ simulations are driven with spatially explicit
meteorological forcings while area-averaged values are used for the simula-
tions with LPJ and LPJ-GUESS.

Historical data are available from the Swiss meteorological service. Hourly pre-
cipitation and temperature gridded fields [Wüest et al., 2010], with 100 m × 100

m resolution, for the period January 2000 through December 2009, are used
(Figure 3.3). Daily values of cloud transmissivity, uniformly distributed over the
catchment, are estimated with a weather generator [Fatichi et al., 2011], compar-
ing simulated clear sky shortwave radiation with ground measurements from
three radiometers in the catchment area (Figure 3.2). A detailed description of
the meteorological products is provided in Section B.2.

Topographic data are obtained by resampling a fine resolution (25 m × 25 m)
digital terrain model of Switzerland to 100 m × 100 m resolution (Figure 3.4a).
The Global Land Cover Product [GlobCover; Bontemps et al., 2009] and the Swiss
soil map [GEOSTAT, 2000] are used to assign spatially distributed land cover
and soil properties (Figure 3.4).
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Figure 3.4: Landscape-level information, in a 100 m × 100 m regular grid, used for the
D-LPJ simulations over the Kleine Emme area: (a) digital elevation model,
(b) effective saturation, averaged over the period January 2000 to December
2009, for the first soil layer, and (c) land cover map imposed on the D-LPJ
simulations. Inner plots illustrate the areal probability density function with
the areal mean denoted by a continuous red line.

The vegetation component of D-LPJ also operates in a spatially explicit mode
with a 100 m × 100 m resolution regular grid but with a daily temporal resolu-
tion. Hourly precipitation and temperature fields are thus aggregated to daily
scale and used for the D-LPJ simulations together with the radiation fields cal-
culated by TOPKAPI-ETH (Figure 3.3). Annual values of atmospheric CO2 con-
centrations, the same as for LPJ and LPJ-GUESS, are assumed to be uniformly
distributed over the catchment area. In addition, spatially distributed fields of
soil water content, snow melt, and snowpack, computed using TOPKAPI-ETH,
are used as inputs to D-LPJ after the spin-up period (Figure 3.4b).

A land use map, based on GlobCover, is imposed to constrain the occurrence
of different vegetation types (Figure 3.4c). More specifically, generic land use
classes (e.g., deciduous, evergreen, mixed forest) are used to restrict the species
distribution over the catchment. Evergreen species, for example, can only occur
in computational elements where land use map indicates evergreen or mixed
forest. This allows us to preserve the observed land use and to obtain a better
spatial representation of the current vegetation cover.

3.2.4 Confirmation datasets

3.2.4.1 Eddy covariance flux measurements

Eddy covariance (EC) flux measurements available from the Swiss FLUXNET
(http://www.swissfluxnet.ch), which is part of the international research net-
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work FLUXNET [Baldocchi et al., 2001; Baldocchi, 2003], are incorporated in the
analysis to refine the parameterization of carbon assimilation for vegetation in
Switzerland. More specifically, we compare model simulations of LPJ with ob-
servations of carbon fluxes at five EC towers. Plant physiological parameters are
adjusted to improve the representation of vegetation functioning in the Swiss en-
vironment (see Section B.3). We use measurements from two forested areas: a
deciduous forest (mostly dominated by European beech, Fagus sylvatica) in the
Laegeren mountain (tower coordinates: 47◦28′42.0′′ N and 8◦21′51.8′′ E at 682 m
a.s.l.; examined period: 2004-2009) and a subalpine coniferous forest in Davos
(mostly covered by Norway spruce, Picea abies) in the Eastern Swiss Alps (tower
coordinates: 46◦48′55.2′′ N and 9◦51′21.3′′ E at 1639 m a.s.l.; examined period:
2000-2005). In addition, EC data from three grassland sites are included in the
analysis: Chamau (tower coordinates: 47◦12′36.8′′ N and 8◦24′37.6′′ E at 393 m
a.s.l.; examined period: 2006-2008), Fruebuel (tower coordinates: 47◦6′57.0′′ N
and 8◦32′16.0′′ E at 982 m a.s.l.; examined period: 2006-2008), and Oensingen
(tower coordinates: 47◦16′59.9′′ N, 7◦43′59.9′′ E at 451 m a.s.l.; examined period:
2002-2003). A more detailed description of the use of EC flux measurements is
provided in Section B.3.

3.2.4.2 MODIS products

Spatial and temporal dynamics of two variables (Gross Primary Production,
GPP, and Leaf Area Index, LAI) from the MODerate resolution Imaging Spectro-
radiometer, [MODIS; Huete et al., 2002] are also used for a qualitative assessment
of the models. The spatial resolution of these vegetation indices is 1× 1 km2

while the temporal resolution is eight days. The mismatch in the spatial resolu-
tion between MODIS and D-LPJ (100 m × 100 m), as well as the uncertainties
related to these products [e.g., Tian et al., 2002; Kang et al., 2005; Heinsch et al.,
2006; Pan et al., 2006; Zhao et al., 2006; Fang et al., 2012, 2013] hamper a quantita-
tive evaluation of simulated vegetation metrics over the Kleine Emme area. Only
a qualitative comparison of the spatial distributions and seasonality of GPP and
LAI is therefore attempted, aiming at the visual comparison of long-term spatial
patterns in the catchment and of the area-averaged seasonal dynamics. The im-
plemented pre-processing procedure (e.g., quality control, temporal smoothing
and interpolation) of the raw MODIS data for the examined simulation period
is detailed in Section B.4.

3.2.4.3 Forest inventory data

The Swiss National Forest Inventory (NFI; http://www.lfi.ch) is a joint project
of the Federal Office for the Environment and the Swiss Federal Institute for
Forest, Snow and Landscape Research. It records different vegetation variables
related to the area, structure and status of forests in Switzerland. The NFI
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database consists so far of three surveys: the first was conducted over the pe-
riod from 1983 to 1985, the second one from 1993 to 1995, and the third one
from 2004 to 2006. Inventory plots influenced by anthropogenic disturbances
(e.g., plant cuttings, replanting) are excluded from our analysis. More details
on the NFI are reported in Section B.5. Here, we focus on the rate of long-
term changes in vegetation carbon stocks, ∆Cveg/∆t, where Cveg is the total
vegetation carbon (i.e., carbon in the foliage, wood, and roots) and ∆t refers
to the examined time period. Simulated values of ∆Cveg/∆t can be compared
with the inventory-based estimates since forest plots with anthropogenic distur-
bances are excluded from our analysis. Changes in vegetation carbon stocks can
be mainly attributed to the balance between vegetation growth and natural dis-
turbances, assuming other components affecting the vegetation carbon balance
(e.g., natural herbivory, emission of volatile organic compounds) to be of minor
importance for the purpose of our study [Luyssaert et al., 2010].

3.2.4.4 River discharge

We complement the validation datasets with measurements of river discharge
distributed in the main river corridor (Figure 3.2). Hourly data from January
2000 through December 2009 at the catchment outlet at Littau (station coordi-
nates: 47◦4′0.1′′ N, 8◦17′2.6′′ E; elevation: 431 m a.s.l.) and at Werthenstein (sta-
tion coordinates: 47◦2′5.6′′ N, 8◦4′6.4′′ E; elevation: 595 m a.s.l.; draining area:
311 km2) are provided by the Swiss Federal Office for the Environment. A can-
tonal station at Soerenberg (LU14; station coordinates: 46◦49′13.3′′ N, 8◦2′6.0′′

E; elevation: 1150 m a.s.l.; draining area: 23 km2) covering a period of January
2005 to December 2009 is also included in the analysis even though the station-
data is likely characterized by a lower quality (Figure 3.2). River discharge can
be considered as an aggregated ecosystem property, encompassing both biotic
(e.g., plant transpiration) and abiotic (e.g., evaporation, river routing) processes.
Therefore, realistic simulation of streamflow reinforces our confidence about
model consistency in reproducing the principal physical mechanisms determin-
ing the hydrological response of the catchment.

3.2.5 Experimental design

The experimental approach is designed to respect the configurations that are
commonly applied in each of the models we used. More specifically, the three
examined models, namely LPJ, LPJ-GUESS, and D-LPJ, are configured using ei-
ther domain average or spatially-explicit local-scale information (f(X) and f(X);
Table 3.1). While, theoretically, both LPJ and LPJ-GUESS could have been used
with a fine resolution configuration, e.g., by prescribing the current vegetation
cover and using fine resolution climatic forcings, this would have been at odds
with common applications carried out with these types of models. Furthermore,
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simplifications in process representation that can be acceptable at coarse spatial
or temporal scales, are not valid at finer resolutions. For instance, the “bucket-
type” hydrological representation, which ignores lateral water fluxes can be a
fair approximation at coarse spatial scales but typically fails at finer scales where
lateral exchanges may be important (Li et al. [2013]; Tang et al. [2014a]; see also
detailed discussion in Section 3.4.4). Therefore, in order to preserve the assump-
tions applicable at the different scales, we use LPJ and LPJ-GUESS with coarse
scale boundary conditions and forcings, and D-LPJ with heterogeneous forcings
at 100 m × 100 m resolution (Table 3.1). With this configuration, we investigate
aggregation-induced biases (f(X) versus f(X)) comparing the three contrasting
approaches for modeling vegetation dynamics. However, for the sake of com-
pleteness, the results of a full factorial experimental design (e.g., simulations
of LPJ with fine resolution inputs and current land use information, as done
for D-LPJ simulations) are included in Sections B.8 and B.9. In essence, as illus-
trated in Figure B.1, the preliminary D-LPJ simulation (i.e., “iteration-0”; Figure
B.1) corresponds to a LPJ simulation which is forced with fine resolution inputs
but lacks the mechanistic hydrological representation of TOPKAPI-ETH (Figure
3.1).

3.3 results

3.3.1 Regionalizing the parameterization of vegetation

The parameterization proposed by Hickler et al. [2012] is used for a first com-
parison of vegetation carbon fluxes. However, a considerable mismatch is found
between EC-based GPP and the simulated values (Figure B.2). In this regard, the
case of the evergreen forest in Davos is striking; the site is dominated by Norway
spruce (Picea abies) with an observed mean annual GPP of about 1100 gC m−2

yr−1 [Etzold et al., 2011], while the simulated GPP with LPJ, using the original
parameterization of Picea abies, is about 2000 gC m−2 yr−1 for the period 2000

to 2005 (Figure B.2). This mismatch is not entirely surprising since the param-
eterization of LPJ, as well as that of LPJ-GUESS, is made envisioning global or
continental scale applications [see Hickler et al., 2012, for the European continent].
It is therefore expected that average parameter values, developed for example to
describe vegetation properties in a 1◦× 1◦ grid, will not be representative of the
fine scale heterogeneities encapsulated in the footprint of eddy-flux towers [e.g.,
Pappas et al., 2013; Rogers, 2014]. Manual adjustments of some plant physiologi-
cal properties are therefore applied to LPJ, LPJ-GUESS, and D-LPJ simulations,
providing a more accurate representation of vegetation carbon fluxes for the
Swiss environment (Figure B.3). Section B.3 provides a detailed description of
the adjusted parameters and the rationale behind the modifications. After these
modifications, the skill of the model in reproducing carbon fluxes for the Swiss
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FLUXNET sites is significantly improved, enabling the model to achieve a co-
efficient of determination between daily simulated and observed GPP equal to
0.62, 0.71, 0.69, 0.69, 0.53, respectively in Chamau, Davos, Fruebuel, Laengern,
and Oensingen (see also Figure B.3).

3.3.2 Confirming the hydrological consistency

Satisfactory results of river discharge are obtained with D-LPJ without signifi-
cant calibration efforts. This model captures fairly well both the short-term and
the seasonal dynamics of river flow in all the examined locations (Figure B.4).
The long-term water budget of the catchment is also realistically simulated, al-
though evapotranspiration is slightly underestimated. For the period 2000-2009,
out of the 1650 mm yr−1 of precipitated water, 1170 mm yr−1 are simulated as
discharge at the outlet and around 480 mm yr−1 as evapotranspiration, while
the observed discharge at the outlet is 1023 mm yr−1.

3.3.3 Bird’s-eye view on vegetation indices

3.3.3.1 Vegetation cover

The two implemented approaches for initialization of vegetation cover i.e., po-
tential natural vegetation for LPJ and LPJ-GUESS, as opposed to a constrained
vegetation distribution based on current land cover for D-LPJ, lead to distinct
results (Figure 3.5). The potential natural vegetation, obtained after the end of
the spin-up period, varies significantly from the actual vegetation distribution
in the area. In D-LPJ simulations, both evergreen and deciduous species have
an important role in the overall vegetation carbon dynamics, reflecting the infor-
mation of the current land use map in the area (Figure 3.5b). Since land cover
information is not imposed in LPJ and LPJ-GUESS simulations, a considerable
discrepancy occurs between the actual vegetation cover and the simulated po-
tential natural vegetation over the Kleine Emme catchment (Figure 3.4c and
3.5d,e, respectively). Both LPJ and LPJ-GUESS overestimate the proportional
abundance of deciduous forest (Figure 3.5d,e). In addition, significant differ-
ences also occur when vegetation carbon stocks and their long-term dynamics
are compared (Figure 3.5c,d,e).

3.3.3.2 Spatial dynamics of GPP and LAI

For both GPP and LAI, the spatially explicit nature of D-LPJ, accounting for cur-
rent land cover as well as local topography and climatic conditions, allows for a
reasonable representation of spatial heterogeneities (Figure 3.6a,b for GPP; and
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Figure 3.5: (a) Total vegetation carbon as simulated with D-LPJ, LPJ, and LPJ-GUESS for
the spin-up (500 years) and the historical period (10 years; shaded area). (b)
Distribution of vegetation types over the catchment area, at the end of the
simulation period, as estimated by D-LPJ (based on the current land cover
map; Figure 3.4c). Long-term vegetation-carbon dynamics over the Kleine
Emme catchment, as obtained through the spin up period, for simulations
with (c) D-LPJ, (d) LPJ, and (e) LPJ-GUESS. Different plant types are grouped
in major plant life forms, i.e., evergreen, deciduous, grass, and shrubs.

Figure 3.7a,b for LAI). Since LPJ and LPJ-GUESS are not spatially explicit, esti-
mates of mean GPP and LAI over the examined area, computed using mean cli-
mate conditions, f(X), are compared with the area-averaged D-LPJ and MODIS
estimates, f(X) (Figure 3.6c,d for GPP; and Figure 3.7c,d for LAI).
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Figure 3.6: Spatial patterns of mean Gross Primary Production (GPP) for the period
2000 through 2009, over the Kleine Emme catchment, as estimated by: (a)
MODIS, (b) D-LPJ, (c) LPJ, and (d) LPJ-GUESS as well as (e) a comparison
of the spatial distribution among the four different estimates. The mean of
the distributions are denoted by dashed lines. Note that since LPJ and LPJ-
GUESS are not spatially explicit, a single value, representative for the entire
catchment, is provided.

Visual similarities exist between GPP estimated by MODIS and D-LPJ values
(Figure 3.6a,b). The mean aggregated response over the catchment is compara-
ble: about 970 gC m−2 yr−1 for MODIS, and about 1080 gC m−2 yr−1 for D-LPJ.
However, MODIS fails, due to algorithmic limitations, to capture the high pro-
ductivity of the grasslands located in the lowland valleys, while D-LPJ simula-
tion provides a second peak in the GPP distribution, at around 1500 gC m−2

yr−1, highlighting such contribution to the overall GPP of the area (Figure 3.6e).
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The D-LPJ results cannot be considered an artefact of the model simulations
since the high productivity of grasslands in Switzerland is confirmed by the
Swiss FLUXNET sites (see Section 3.3.1). Conversely, uncertainties in MODIS
product, related to the transfer of the absorbed radiation into carbon assimila-
tion for grassland as well as frequent periods with cloud- or snow-cover in the
catchment, may cause these discrepancies [e.g., Kang et al., 2005; Heinsch et al.,
2006; Zhao et al., 2006].
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Figure 3.7: Spatial patterns of mean Leaf Area Index (LAI) for the period 2000 through
2009, over the Kleine Emme catchment, as estimated by: (a) MODIS, (b) D-
LPJ, (c) LPJ, and (d) LPJ-GUESS as well as (e) a comparison of the spatial
distribution among the four different estimates. The mean of the distribu-
tions are denoted by dashed lines. Note that since LPJ and LPJ-GUESS are
not spatially explicit, a single value, representative for the entire catchment,
is provided.
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The LPJ and LPJ-GUESS estimates of GPP are significantly different from those
retrieved by MODIS and simulated by D-LPJ, i.e., f(X) 6= f(X). LPJ-GUESS
gives a value of GPP of about 650 gC m−2 yr−1 (averaged over the simulated
period) while the LPJ value is slightly higher (about 835 gC m−2 yr−1) but still
considerably below the D-LPJ or MODIS values. This can be attributed to differ-
ences in vegetation composition as well as in local meteorological/hydrological
conditions underlying D-LPJ, LPJ, and LPJ-GUESS simulations. In both LPJ and
LPJ-GUESS simulations, deciduous forest is the dominant vegetation type over
the area, while in D-LPJ simulations the current vegetation cover is preserved
(Figure 3.5).

The coarse resolution of the MODIS product cannot capture some of the het-
erogeneities in the LAI patterns as simulated by D-LPJ (Figure 3.7a,b). The im-
portance of local climate (particularly the spatial patterns of radiation and tem-
perature, Figures 3.3b,c) in shaping the LAI dynamics is reflected in the D-LPJ
simulations (Figure 3.7b). The annual mean LAI estimated by MODIS (Figure
3.7a; LAI≈2.0), is lower than the mean of D-LPJ estimate (Figure 3.7b; LAI≈2.9).
This is more likely to reflect a poor reliability of MODIS estimates rather than
the real LAI magnitude in the catchment [Tian et al., 2002; Yang et al., 2006; Fang
et al., 2012, 2013]. The simulated values of LPJ (Figure 3.7c; LAI≈1.8) and LPJ-
GUESS (Figure 3.7d; LAI≈1.6) are low due to the predominance of deciduous
forest (Figure 3.5).

3.3.3.3 Temporal dynamics of GPP and LAI

The seasonal dynamics of GPP simulated with D-LPJ are in good agreement
with vegetation activity estimated with MODIS (Figure 3.8a). MODIS products
capture greening phase dynamics with less uncertainty than its magnitude [e.g.,
Heinsch et al., 2006]. However, some source of error can still be present, for in-
stance, related to data processing algorithms and missing values. For instance,
while the length of the growing season is fairly comparable between MODIS
and D-LPJ estimates, a mismatch in the intra-season variability of LAI occurs
(Figure 3.8b). The seasonal patterns of GPP and LAI as simulated by LPJ and
LPJ-GUESS are also similar to the D-LPJ results, since the underlying phenol-
ogy modules are identical in all three models and the effect of local climatic
differences is smoothed out by averaging them over the entire domain (Figure
B.5).

3.3.4 Ant’s-eye view on carbon stocks

Vegetation carbon dynamics, expressed as the rate of long-term changes in veg-
etation carbon stocks, denoted as ∆Cveg/∆t, for the last 10 years of simulations
with D-LPJ, LPJ, and LPJ-GUESS (i.e., 2000 to 2009), are significantly different
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Day of the Year

(a)

(b)

Figure 3.8: Seasonal dynamics of normalized Gross Primary Production (GPP) and nor-
malized Leaf Area Index (LAI), averaged over the Kleine Emme catchment,
for the period 2000 to 2009, based on MODIS and D-LPJ.

when compared to estimates from the in situ forest inventory observations (Fig-
ure 3.9). In the spatial domain of the catchment, ∆Cveg/∆t values estimated by
D-LPJ are close to zero for most of the grid cells except for few sites on the
South-West part of the region where evergreen and mixed forest occur. Even
for these cells, the values of ∆Cveg/∆t simulated by D-LPJ are much lower than
the range of variability of the forest inventories sites, which exhibit values of
the first and third quantile around 100 and 400 gC m−2 yr−1, respectively (Fig-
ure 3.9b). This does not come as a surprise, since it is the result of imposing
in the simulations carried out with D-LPJ, LPJ, and LPJ-GUESS a spin-up pe-
riod, as it is generally done in all DGVMs. The spin-up is designed to provide a
state of vegetation in equilibrium with the prevailing environmental conditions.
Therefore, in absence of significant climatic changes, the simulated changes in
vegetation carbon stocks with D-LPJ, LPJ, and LPJ-GUESS, are intrinsically low
(practically close to zero, as shown by Figure 3.9b). Conversely, the observations
obtained from the forest inventories give a mean rate of increase in vegetation
carbon stocks of about 210 gC m−2 yr−1 in the examined forests (Figure 3.9b),
because they represent measurements of actual and likely non-stationary condi-
tions, which are influenced for example by environmental controls and natural
disturbances. Discrepancies occur also when ∆Cveg/∆t values at the beginning
of the spin-up period are compared with the inventory-based estimates. The
slope of the vegetation carbon pools for the first 100 years of the spin-up, com-
puted as the derivatives of the vegetation carbon stock accumulation over 10-
year time-windows (Figure 3.5a), varies in the range of 35-120, 15-135, 25-65

gC m−2 yr−1 for LPJ, LPJ-GUESS, and D-LPJ, respectively, contrasting with the
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mean estimated changes in vegetation carbon stocks from the forest inventories
which is considerably higher (210 gC m−2 yr−1; Figure 3.9b).
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Figure 3.9: (a) Spatial patterns of the rate of long-term changes in vegetation carbon
stocks (denoted as ∆Cveg/∆t) of forested areas in Kleine Emme as estimated
by D-LPJ, and by the National Forest Inventories (NFI; black dots; filled sym-
bols are used for increase while open circles are used for decrease in total
vegetation carbon). (b) Box-plot of ∆Cveg/∆t values over the Kleine Emme
region, based on LPJ-GUESS, LPJ, D-LPJ, and NFI. Grey dots correspond
to ∆Cveg/∆t values either in each simulated grid-cell (case of D-LPJ), or in
each of the forest inventory plots (case of NFI). The areal mean is indicated
with red circles.
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3.4 discussion

The results presented in the previous sections provide a comprehensive eval-
uation of several approaches for modeling terrestrial ecosystems, scrutinizing
modeling assumptions and spatial aggregation rules. We explicitly quantified
how the coarse spatial representations of DGVMs lead to aggregation-induced
biases for the orographically complex landscape of the Kleine Emme catchment.
Hereafter, we discuss the insights gained at the catchment scale which have pos-
sible implications for applying such modeling approaches at the regional and
global scales.

3.4.1 Aggregating landscape heterogeneity: DGVMs, gap-models, and ecohydrological
schemes

Since LPJ, LPJ-GUESS and D-LPJ apply an identical formulation to mimic bio-
physical and biochemical processes, discrepancies among the simulated vege-
tation dynamics can be attributed to the following three main reasons, further
discussed in the following sections: (i) initialization with different vegetation
cover, i.e., potential natural vegetation (LPJ and LPJ-GUESS) versus constrained
vegetation distribution derived from current land cover information (D-LPJ); (ii)
effects of local topography, climate, and hydrological representation, i.e., mean
field approach of LPJ and LPJ-GUESS versus ecohydrological approach of D-LPJ;
(iii) different approaches for simulating vegetation structure and dynamics, i.e.,
population-based (LPJ, D-LPJ) versus individual-based approach (LPJ-GUESS).
Moreover, in order to quantify the relative importance of land cover initializa-
tion versus that of local climate, topography, and hydrology, the following addi-
tional simulation are included in the Appendix: (i) LPJ simulations with mean
climatic conditions over the area, but with prescribed land cover instead of the
potential natural vegetation hypothesis (Section B.8), and (ii) LPJ simulations
with high resolution inputs (meteorological forcings and land cover information;
same as D-LPJ approach) but without the enhanced hydrological representation
of TOPKAPI-ETH (Section B.9).

3.4.1.1 The importance of actual rather than potential vegetation cover

In agreement with other model- and data-based studies, the role of land use his-
tory cannot be easily neglected when fragmented landscapes, such as the Kleine
Emme catchment, are simulated [Harmon, 2001; Barnes and Roderick, 2004; Hurtt
et al., 2004; Gimmi et al., 2008, 2012; Williams et al., 2009]. Even though vegetation
cover is initialized in the three approaches (LPJ, LPJ-GUESSS, and D-LPJ), since
the successional dynamics of vegetation are simulated starting from an unvege-
tated state, the imposition of a land use map allows for a better representation
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of the current state of the system. This was reflected in the D-LPJ results in
terms of species distribution (Figure 3.5b), GPP (Figure 3.6a) and LAI (Figure
3.7a) dynamics. In addition, by comparing simulation results of LPJ using the
current land cover map with the D-LPJ results (Section B.8), the following addi-
tional conclusions can be drawn: (i) the role of land cover initialization is most
relevant for the carbon fluxes (GPP; Figure B.6), and (ii) the role of local climate,
topography, and hydrological regime is predominant in controlling the leaf area
pattern (Figure B.7). These results highlight the importance of accounting for
anthropogenic impacts on the land cover history within the model setup, rather
than using the hypothesis of potential natural vegetation, where predefined bio-
climatic limits regulate the vegetation distribution over the landscape.

3.4.1.2 The importance of being spatially explicit

A strong disagreement is observed between the areal estimates of GPP and LAI
obtained from the spatially distributed model (D-LPJ) and those obtained from
the lumped representations of LPJ, and LPJ-GUESS. When D-LPJ is run, using
high resolution gridded information of climatic and topographic variables, the
spatial patterns of vegetation activity appear to be realistic, reflecting observed
local heterogeneities (Figure 3.6a,b,e, and 3.7a,b,e). A comparison of MODIS and
D-LPJ spatial patterns of GPP (Figure 3.6a,b) underlines qualitatively the plau-
sibility of the simulated heterogeneity at the landscape level and supports the
hypothesis of the influence of local variability of both climate and topography
in shaping vegetation response. As illustrated in Figure 3.6e and 3.7e, for both
GPP and LAI, LPJ and LPJ-GUESS results (i.e., f(X)) do not correspond to the
mean response of the spatially explicit D-LPJ model (i.e., f(X)).

The importance of a detailed spatial representation for simulating complex, spa-
tially distributed systems has been often emphasized [e.g., Pacala and Deutschman,
1995; Bugmann and Fischlin, 1996; Baldocchi et al., 2005; Strigul et al., 2008; Sears
et al., 2011; Wood et al., 2011; Potter et al., 2013; Zhao and Liu, 2014] and demon-
strated theoretically [Levin, 1974, 1976; Rastetter et al., 1992; Norman, 1993; Dur-
rett and Levin, 1994]. However, models that are widely used in the global carbon
cycle research do not account yet for local heterogeneities, as it is done for ex-
ample in this study with the D-LPJ simulations. The rationale behind the coarse,
lumped representation of LPJ, LPJ-GUESS and other DGVMs is, conversely, that
the mean response of the system, f(X), can be captured reasonably well by char-
acterizing and forcing to the model with the mean properties of the system,
f(X). However, this assumption fails when nonlinear processes are simulated,
as pointed by Jensen’s inequality, [f(X) 6= f(X); Jensen, 1906], so that the ap-
proach commonly used by DGVM simulations leads to the fallacy of the averages
[Wagner, 1969], i.e., “the false assumption that the mean of a nonlinear function
of several variables equals the function of the means of those variables” [Welsh
et al., 1988].
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Most of terrestrial ecosystem models rely only upon coarse spatial represen-
tations of the Earth surface, dictated by computational limitations and lack of
local information. Such an approach averages out local scale heterogeneities of
climate and topography that, as demonstrated by our analysis, as well as by
experimental evidence [e.g., Scherrer and Körner, 2009; Adams et al., 2014], have a
significant impact in ecosystem functioning, particularly in areas with complex
terrains. In addition, the coarse spatial resolution, implemented in LPJ and LPJ-
GUESS, provides a crude representation of the system which goes beyond the
simple averaging of heterogeneities; it implies that the simulated computational
elements are treated independently without spatial interactions such as lateral
water flows (see Figure B.8, where the implications of this assumptions on the
hydrological regime of the catchment are illustrated). In summary, we argue on
the basis of numerical experiments, which are confirmed by observational evi-
dence, that the coarse spatial resolution and the area-averaged representation of
terrestrial ecosystems in heterogeneous topography are likely to be questionable
in general, and, in particular, for impact studies. Ecohydrological approaches as
implemented here as well as in other ecohydrological models [e.g., Tague and
Band, 2004; Ivanov et al., 2008b; Fatichi et al., 2012b; Tang and Bartlein, 2012; Tague
et al., 2013; Tang et al., 2014b] might conversely represent a valuable alterna-
tive.

3.4.1.3 The role of forest structure and dynamics

Different representations of the canopy (i.e., population- versus individual-
based approach; Section 3.2.1.1) cause differences in simulated vegetation car-
bon dynamics (Figure 3.5). As already highlighted by Smith et al. [2001], the
population-based model provides higher values of GPP and LAI in compar-
ison to the individual-based approach (Figure 3.6e and 3.7e). This is due to
differences in the light distribution throughout the canopy. In LPJ-GUESS the
simulated forest stand is more heterogeneous and light harvesting is less effi-
cient because of leakages in the vegetation canopy, while the vertical homogene-
ity of LPJ allows to capture more radiation [Smith et al., 2001]. However, it is
worth underlining that, the variability of vegetation dynamics, induced by local
scale forest disturbances as well as climatic heterogeneities and hydrological
regime, appears to be more influential, overcoming the variability induced by
the individual-based approach. Mechanistic representations of forest demogra-
phy using the gap-model approach [Bugmann, 2001] are often introduced with
the aim to account for the spatial heterogeneity of the forest stand thus im-
proving the area-averaged representation of most DGVMs [e.g., Liu et al., 2011].
Nonetheless, they still fail in including local scale heterogeneities (disturbances,
meteorological and topographic attributes, soil-water content spatiotemporal
variability) that, in meso-scale and fairly heterogeneous catchments, like Kleine
Emme, appear to exert a strong signature in vegetation response (Figure 3.6 and
3.7).
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3.4.2 Equilibrium vegetation and the rate of carbon sequestration

The concept of potential vegetation in equilibrium with historical climate con-
ditions is often incorporated in DGVMs for the initialization of several of their
state variables (e.g., vegetation, soil, and litter carbon pools). Given the daunting
task of initializing every single variable for which often no information is avail-
able, a spin-up period, starting from an unvegetated state, is a convenient and
unavoidable way for model initialization [Pietsch and Hasenauer, 2006; Carvalhais
et al., 2008, 2010; Williams et al., 2009]. Our results provide a direct quantifica-
tion of the implications of such a simplified assumption and are consistent with
observations from an increasing number of studies indicating that many forest
ecosystems are not in equilibrium but rather in a growing stage [e.g., Buchmann
and Schulze, 1999; Liski et al., 2002; Ciais et al., 2008; Keith et al., 2009; Luyssaert et al.,
2010]. This is particularly true for the highly productive Swiss forest [Gehrig-
Fasel et al., 2007], where carbon sequestration is estimated to be 60% higher than
an average forest of Central Europe [SAEFL/WSL, 2005; Etzold et al., 2011]. The
legacy of the place shapes the landscape in a much different way than what can
be obtained using the potential vegetation hypothesis, i.e., assuming vegetation
in equilibrium with historical climate. The history of local scale disturbances
controls ecosystem equilibrium or a lack thereof, thus influencing its response
in terms of productivity and capacity to store carbon [e.g., Sprugel, 1991; Durrett
and Levin, 1994; Körner, 2003b; Gehrig-Fasel et al., 2007; Smith, 2014].

While the inventory based estimate of ∆Cveg/∆t for our case study is about 210

gC m−2 yr−1, all the three models, LPJ, LPJ-GUESS, and D-LPJ simulate a value
at the end of the spin-up period which is close to zero (Figure 3.9). D-LPJ allows,
however, for some variability, which make the results more comparable to NFI
estimates (Figure 3.9). Because LPJ-GUESS, in comparison to LPJ and D-LPJ,
allows for generic disturbances, simulated as random events with pre-defined
expected return periods, it can maintain a dynamic equilibrium by balancing be-
tween disturbance events and forest recovery leading to a more variable carbon
balance dynamics (Figure 3.5a). However, while these patch scale disturbances
may lead to realistic simulations at the global or continental scales [e.g., Badeck
et al.; Smith et al., 2001; Hickler et al., 2004], our analysis demonstrates that they be-
come questionable at basin meso-scales like that of our test case (Figure 3.9). At
these scales, approaches based on the specific local disturbance history should
be applied.

Model simulations of terrestrial ecosystem functioning can therefore be signifi-
cantly improved using a better description of the boundary conditions [Liu et al.,
2011]. The increasing data availability through Earth-observation programs [e.g.,
Pan et al., 2013; Butler, 2014] and advanced remote sensing techniques [Kerr and
Ostrovsky, 2003; Hurtt et al., 2004; Antonarakis et al., 2014] provide already a rich
amount of information, such as vegetation type, biomass, stand age class, phe-
nology, leaf area index, tree height [Lucas and Curran, 1999; Turner et al., 2004;
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Nightingale et al., 2004; Shugart et al., 2010], which can be conveniently used
for model initialization. While enhancing model initialization with global scale
distributed observations comes without additional computational cost, it can
improve significantly model simulations.

3.4.3 Vegetation carbon fluxes and stocks: towards a better model-data integration

Eddy covariance flux measurements and forest inventories are the two main
strategies for tracing vegetation carbon fluxes and stocks, respectively. As eddy-
flux towers are becoming widespread worldwide (e.g., CarboeuropeIP, Ameri-
Flux, Ozflux) and biosphere and atmosphere fluxes are getting widely accessi-
ble, many model-data comparisons are conducted for flux tower sites, mainly
focusing on ecosystem level carbon fluxes (GPP, e.g., Schaefer et al. [2012], or Net
Ecosystem Exchange, NEE, e.g., Dietze et al. [2011]). At the same time, several
tree census datasets are available worldwide [Anderson-Teixeira et al., 2014], offer-
ing a great potential for model-data integration [Lichstein et al., 2010]. However,
few studies so far have compared model simulations with carbon stock mea-
surements or demographic stand characteristics [e.g., Hurtt et al., 2004; Weng
and Luo, 2011; Medvigy and Moorcroft, 2012; Antonarakis et al., 2014].

Model confirmation against vegetation carbon fluxes at flux tower sites does not
imply a realistic simulation of vegetation carbon stock dynamics in areas with
similar vegetation cover and environmental conditions. While D-LPJ performs
fairly well in capturing the spatial (Figure 3.6) and temporal dynamics (Figure
3.8a) of vegetation carbon fluxes, and shows a reasonable agreement with the
Swiss FLUXNET sites (Figure B.3), remarkable differences occur when modeled
and observed values of forest carbon stock changes are compared (Figure 3.9).
Disturbances, aging, and turnover processes may have more significant contri-
bution to the landscape’s carbon budget than the assimilated carbon through
plant activity [Dolman et al., 2003; Körner, 2003b; Friend et al., 2014]. In this re-
spect, the legacy of the place, i.e., local scale disturbances, individual-level plant
establishment, growth and mortality rates, control the vegetation carbon storage.
The localized nature of these phenomena is thus the likely cause of the strong
mismatch between simulated and observed carbon stocks changes [e.g., Harmon,
2001; Fisher et al., 2008].

Furthermore, our analysis reveals that the inventory-based estimates also dif-
fer from the simulated carbon sequestration rate when the system is not yet
balanced (i.e., derivative of the vegetation carbon pools at the beginning of the
spin-up; Figure 3.5a). This underlines not only that the state of the forest ob-
tained after the spin-up is not realistic, but allows us also to speculate that there
could be structural issues in how forest growth is simulated in the models. Ac-
cordingly, in long-term analyses focusing mainly on the carbon stored in forest
stands, special caution should be paid to model-based inferences regarding veg-
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etation carbon storage when evidence shows that the simulated fluxes are only
confirmed by observations in eddy flux tower sites.

3.4.4 Broader implications and ways forward

Organisms do not experience climate at coarse scales [Sears et al., 2011; Potter
et al., 2013]. Thus, aggregation biases can be significant not only when past
and current ecosystem dynamics are simulated, but also when model projec-
tions under climate change scenarios are carried out [Trivedi et al., 2008]. When
process-based models are used, and confidence on their results is based on their
“physical-correctness and consistency”, then the “physics” should be solved at
appropriate scales with appropriate forcings. In this study we quantified the bi-
ases occurring in terrestrial ecosystem modeling when this is not done. Model
complexity and process representation should therefore match with the adopted
spatiotemporal representation, as well as with the quality and resolution of the
available data [Costanza and Maxwell, 1994]. Advanced statistical tools, such as
emulators, together with enhanced computing capabilities can provide viable
options to cope with the additional computational burden [Neelin et al., 2010;
Castelletti et al., 2012].

If solving processes at the appropriate scales is computationally too demanding,
given the available resources, then statistical and/or top-down approaches may
represent a conceptually better approximation of terrestrial ecosystem function-
ing. For instance, a statistical-dynamical approach [e.g., Giorgi and Avissar, 1997]
can be incorporated in terrestrial ecosystem modeling using the empirical prob-
ability density function of local scale attributes, thus describing the heterogene-
ity of the meteorological forcings in the examined domain or that of plant traits
[Reich, 2014]. The potential of using well established approaches from other dis-
ciplines dealing with spatial aggregation of complex non-linear systems [e.g.,
population and community ecology, Auger et al., 2012; Chesson, 2012], as well as
organizing principles [e.g., Mäkelä et al., 2002; Whitfield, 2007; Dewar, 2010], is
also worth of exploring.

3.5 conclusions

Our study revealed that local scale spatial heterogeneities, which are often ig-
nored or at best crudely represented in terrestrial ecosystem models, exert a
strong control on ecosystem response. Therefore, preservation of local environ-
mental and topographic attributes, as proposed with the fine spatial resolution
grid of the D-LPJ model, represents an important feature to achieve a more re-
alistic representation of terrestrial ecosystem dynamics. In addition, we showed
that model initialization, and therefore forest historical legacy, has a remarkable
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importance on carbon balance assessments and specifically on the capacity of
the forest to store carbon. The assumption of steady-state vegetation and soil
carbon pools, incorporated in DGVMs for pragmatic reasons, is in contradiction
with the current state of many forests, which are often far from an equilibrium
and with different states of succession due to natural or anthropogenic distur-
bances. A realistic assessment of future carbon stocks cannot be separated from
an accurate representation of these heterogeneities and local scale trajectories.
The light shed by this study on model limitations, emphasizes the importance
of solving biophysical and biogeochemical processes at the appropriate scales
and with the appropriate boundary conditions.
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4
M O D E L I N G T E R R E S T R I A L C A R B O N A N D WAT E R
D Y N A M I C S A C R O S S C L I M AT I C G R A D I E N T S : D O E S P L A N T
D I V E R S I T Y M AT T E R ?

abstract

Vegetation diversity in many terrestrial ecosystem models is crudely repre-
sented using a discrete classification of a handful of “plant types” (named Plant
Functional Types; PFTs). The parameterization of PFTs reflects mean properties
of observed plant traits over broad categories ignoring most of the inter- and
intra-specific trait variability. Taking advantage of well-established plant-trait
cross-correlations described by the Leaf Economics Spectrum as well as doc-
umented plant drought strategies, we generated an ensemble of hypothetical
species with coordinated attributes, rather than using few PFTs. The behavior
of these proxy species is tested using a mechanistic ecohydrological model that
translates plant traits into plant performance. Simulations are carried out for a
range of climates representative of different elevations and wetness conditions
in the European Alps. Using this framework we investigated the sensitivity
of ecosystem responses to species-induced variability and compared it with
climate-induced variability. Trait diversity leads to highly divergent vegetation
carbon dynamics (fluxes and pools) and to a lesser extent water fluxes (tran-
spiration). Abiotic processes, such as soil water dynamics and evaporation, are
only marginally affected. These results highlight the need for improving species
representation in vegetation models. Probabilistic approaches, based on empiri-
cal multivariate distributions of coordinated plant trait spectra, provide a viable
alternative.

4.1 introduction

Understanding the terrestrial ecosystem functioning and its responses under
changing climatic conditions requires the development of mechanistic numeri-
cal models to simulate carbon, water, and nutrient dynamics. Modeling is the
art of the appropriate approximation [Jennings, 2007]. In an attempt to concep-
tualize the terrestrial ecosystem from a modeler’s perspective, the following
components can be identified: (i) the initial and boundary conditions; (ii) the
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abiotic factors, consisting essentially of the environmental drivers (e.g., precipi-
tation, temperature); and (iii) the biotic attributes, representing the living organ-
isms (plant parameters for the case of vegetation models) that thrive within the
system’s boundaries. The immense diversity occurring in terrestrial ecosystems
has to be reflected in the aforementioned conceptual components. Several tech-
niques have been therefore developed for approximating natural heterogeneity
within models, particularly in deterministic, process-based schemes.

While variability in boundary conditions and abiotic component of the system
can be captured sufficiently well by numerical models imposing local scale in-
formation from modern remote-sensing data [e.g., imaging spectrometry and
waveform lidar; Antonarakis et al., 2014] and using fine resolution spatiotempo-
ral representations [e.g., Tague and Band, 2004; Ivanov et al., 2008a; Hwang et al.,
2009; Wood et al., 2011; Fatichi et al., 2012a; Pappas et al., under review-a], the
biotic attributes and the related species heterogeneities are often simplistically
represented.

Nature is rich in plant properties and functional forms. Hot-spots of biodiver-
sity exist with more than 5000 species per plot [see Mutke and Barthlott, 2005, for
a global perspective of vascular plant diversity]. Accounting for this immense
diversity is very challenging and bottom-up approaches (e.g., based on individ-
ual, species-specific parameterizations) are hampered by species abundance. For
pragmatic reasons (e.g., computational constraints and data scarcity), a handful
of broad vegetation categories, named Plant Functional Types (PFTs, e.g., tem-
perate broadleaf deciduous forest) preserving major phenological, environmen-
tal and leaf shape characteristics is typically used for mimicking plant diversity
and functioning [Woodward, 1992; Box, 1996; Lavorel et al., 1997; Bonan et al., 2002;
Harrison et al., 2010]. The PFT-conceptualization is based on static physiological
parameters and bioclimatic variables [e.g., minimum coldest-month tempera-
ture for survival; Sitch et al., 2003] that define their occurrence. The PFT concept
is widely incorporated in terrestrial ecosystem models [such as Dynamic Global
Vegetation Models DGVMs; Sitch et al., 2003; Prentice et al., 2007; Sitch et al.,
2008] and Earth System Models [ESMs; Cox et al., 2000; Friedlingstein et al., 2006;
Friedlingstein and Prentice, 2010; Prinn, 2012], since it offers a simple way for deal-
ing with biotic variability and floristic complexity, but has several weaknesses
and limitations as outlined hereafter.

Grouping plant traits in broad categories (PFTs) captures an important frac-
tion of trait variation [Kattge et al., 2011], but the discrete and static species pa-
rameterization poses serious constraints, especially when long-term, prognostic
simulations are envisioned. The drawbacks underlying this conceptualization
have been recently recognized [Kleidon and Mooney, 2000; Lavorel and Garnier,
2002; Kleidon et al., 2007; Lavorel et al., 2007; Prentice et al., 2007; Reich et al., 2007;
Thuiller et al., 2008; Ordoñez et al., 2009; Williams et al., 2009; Harrison et al., 2010;
Quillet et al., 2010; McMahon et al., 2011; Van Bodegom et al., 2012; Stoy et al., 2013;
Wullschleger et al., 2014]. The importance of representing plant diversity within
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models has been also highlighted using statistical tools [e.g., Pappas et al., 2013,
for a detailed sensitivity analysis of a DGVM], or by embedding trait variations
in vegetation [e.g., Wang et al., 2012], or Earth System Models [e.g., Verheijen
et al., 2013, but see also Higgins et al. [2014]].

Plants are not static, they respond dynamically to local conditions (resources
availability) by adjusting their metabolism. Different levels of plant adjustments
exist, for example phylogenetic selection, genotypic differentiation, morpholog-
ical modifications, physiological acclimation [Ackerly, 2003; Korner, 2012]. These
adjustments are reflected in plant functional traits, defined as plant morpholog-
ical, phenological or physiological characteristics that control plant functioning
and thus its fitness [Violle et al., 2007; Laughlin and Laughlin, 2013], leading to sig-
nificant divergence among plant properties [limiting similarity; MacArthur and
Levins, 1967], and strong spatiotemporal variation. Functional traits vary signifi-
cantly not only among [e.g., Reich et al., 1997; Wright et al., 2004], but also within
species [Albert et al., 2010a, b; Bolnick et al., 2011; Albert et al., 2011; Cadotte et al.,
2011; Violle et al., 2012; Kichenin et al., 2013], as well as among plant communi-
ties [Messier et al., 2010]. They may vary also throughout plant’s lifespan due to
plant adaptation to prevailing environmental conditions.

An illustrative example is that of leaf photosynthetic properties (e.g., maximum
Rubisco carboxylation capacity, Vcmax). Variation of Vcmax is not limited across
species, where it has been observed to vary by almost two orders of magnitude
[Wullschleger, 1993; Medlyn et al., 1999, 2002b; Kattge and Knorr, 2007; Kattge et al.,
2009], but also across different locations [Wilson et al., 2000; Fyllas et al., 2009;
Castanho et al., 2013], and plant age-class [Thomas, 2010]. It has also been shown
to undergo seasonal variation [Wilson et al., 2000; Baldocchi and Xu, 2005; Bonan
et al., 2011; Medvigy et al., 2013], and to be controlled by photoperiod [Bauerle
et al., 2012]. Vcmax is included in almost all vegetation models that mechanisti-
cally simulate carbon assimilation [Rogers, 2014] and has been found to be the
cornerstone of their performance [Pappas et al., 2013]. While Vcmax is crucial for
vegetation modeling, its variation is hidden by the PFTs parameterization where
discrete values, that often do not even correspond to the mean of the empirical
distribution of the measured values are used [see a detailed discussion in Kattge
et al., 2011].

Taking advantage of the recently assembled global databases of plant-traits, e.g.,
GLOPNET, Wright et al. [2004] and TRY initiative, Kattge et al. [2011], alternative
traits-based vegetation modeling approaches have been proposed, moving be-
yond the paradigm of PFTs [Westoby et al., 2002; Lavorel and Garnier, 2002; McGill
et al., 2006; Webb et al., 2010; Cadotte et al., 2011; Van Bodegom et al., 2012; Laugh-
lin and Laughlin, 2013]. Trait-based approaches build upon well documented
cross-correlations across multivariate plant trait spectra, such as leaf traits [Leaf
Economics Spectrum, LES; Reich et al., 1997; Wright et al., 2004], plant hydraulic
properties [e.g., Manzoni et al., 2013], wood properties [wood economics spec-
trum; Chave et al., 2009] or seed mass properties [Westoby et al., 2002; Moles et al.,
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2005a, b], as well as their covariations with environmental conditions [Díaz et al.,
1998; Wright et al., 2004, 2005; Ordoñez et al., 2009; Maire et al., 2012] and nutrient
availability [Reich et al., 1997; Reich and Oleksyn, 2004; Wright et al., 2004; Ordoñez
et al., 2009; Maire et al., 2012]. Coordinated proxy plant species can be there-
fore generated and embedded in vegetation models, maintaining the empirical
distributions and cross-correlations of plant traits, their dominant stoichiomet-
ric constraints (e.g., nitrogen dependencies), and environmental controls (e.g.,
water availability).

Accordingly, we adopt in the present study a trait-based approach to analyze the
importance of species representation in terrestrial ecosystem modeling and their
relation to the simulated water and carbon dynamics. Following the conceptual
framework introduced by Webb et al. [2010], our analysis consists of three main
elements: (i) distribution of plant traits (Section 4.2.3), (ii) performance filter
(Section 4.2.1), and (iii) environmental gradients (Section 4.2.2). Coordinated
proxy plant species are generated, across a continuous spectrum of plant traits,
using the well-established empirical plant-trait cross-correlations (LES, using
the freely available GLOPNET dataset; Wright et al. [2004]) as well as different
drought tolerances. The behavior of these proxy species is then tested using an
ecohydrological model [T&C; Fatichi et al., 2012a] that simulates mechanistically
plant performance. Simulations are carried out for a range of climatic conditions
representative of naturally occurring meteorological gradients in Switzerland,
which are exemplary for a large variety of climatic boundary conditions.

Using this framework we quantify explicitly the implications of a pluralistic
trait-specific representation of vegetation functioning in simulating water and
carbon fluxes and stocks. The main questions addressed are thus: (i) which is
the importance of trait diversity in simulating terrestrial ecosystem responses
in terms of carbon- and water-related variables? (ii) Which are the aggregation
biases induced by smoothing of species variability through PFTs? (iii) Is the
trait-induced variability comparable to the variability induced by climate het-
erogeneity?

4.2 materials and methods

4.2.1 Modeling ecosystem functioning

4.2.1.1 Model description

Numerical simulations were carried out using the Tethys-Chloris (T&C) model
[Fatichi et al., 2012a, b; Fatichi and Leuzinger, 2013; Fatichi et al., 2014; Fatichi and
Ivanov, 2014]. T&C is a mechanistic distributed ecohydrological model designed
to simulate essential components of terrestrial hydrological and carbon cycle
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resolving exchanges of energy, water, and CO2 at an hourly resolution. Mass
and energy fluxes control the temporal evolution of vegetation (carbon pools)
that in turn can feed back land-atmosphere exchanges through its biophysical
structure and physiological properties. Soil moisture dynamics in saturated and
unsaturated soils are solved using the one-dimensional (1D) Richards equation
for vertical flow and the kinematic approximation for lateral subsurface flow.
Photosynthesis is simulated with a biochemical model [Farquhar et al., 1980; Bo-
nan et al., 2011] where sunlit and shaded leaves are treated separately for the
computation of net assimilation and stomatal resistance. An exponential decay
of photosynthetic capacity is used to upscale photosynthesis from the leaf to the
plant scale [Ivanov et al., 2008a; Bonan et al., 2011].

The dynamics of seven carbon pools are explicitly simulated in the model and in-
clude (i) green aboveground biomass (leaves), (ii) living sapwood (woody plants
only), (iii) fine roots, (iv) carbohydrate reserve (non-structural carbohydrates),
(v) standing dead leaf biomass, (vi) fruit and flowers, and (vii) heartwood and
dead sapwood. The carbon assimilated through photosynthetic activity is used
for growth, and reproduction and is lost in the process of respiration and tis-
sue turnover. Carbon allocation and translocation are dynamic processes that
account for resource availability (light and water), allometric constraints and
phenology. Organic matter turnover of the different carbon pools is controlled
by tissue longevity and environmental stresses, i.e., drought and low temper-
atures. Phenology is simulated considering four states [Arora and Boer, 2006]:
dormant, maximum growth, normal growth, and senescence.

Forest demography and nutrient dynamics are neglected in the model, which
always considers a mature vegetation in equilibrium with its nutritional and hy-
drometeorological environments. The domain of the simulation is typically rep-
resented by a regular grid as described by digital elevation models and includes
topographic effects of incoming radiation and lateral water transfers. However,
in this study, each computational element was treated in isolation, without an
explicit areal dimension, i.e., point-scale simulations were carried out. A detail
description of the model structure and process parameterizations is presented
in Fatichi et al. [2012a].

4.2.1.2 Simulation protocol

Plot scale simulations were performed using a 3 m deep soil column, discretised
into 19 layers of various thickness (10-500 mm). Soil properties correspond to a
typical loam with 40% sand, 20% clay, and 2.5% organic matter [percentages are
expressed by weight basis; Saxton and Rawls, 2006]. The meteorological forcing
of T&C consists of hourly values of solar radiation subdivided into two wave-
bands (including Photosynthetically Active Radiation, PAR), precipitation, air
temperature, water vapour pressure, cloud cover, atmospheric pressure, wind
speed, and atmospheric CO2 concentration. The latter was fixed to 380 ppm.
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Thirty years long T&C simulations were carried out, using synthetic time series
of the meteorological variables (see Section 4.2.2). The first five years of the sim-
ulations were used for model spin-up (i.e., initialization of state variables). We
consider five years to be sufficient since the model starts from a mature forest
condition and only soil moisture and living carbon pools have to be initialized.
The results presented in the following sections are based on long-term averages
of the remaining 25 yr. T&C specific parameters are detailed in Table C.2.

4.2.2 Meteorological forcing across climatic gradients

Cross-correlated long-term meteorological time series are generated using an
advanced weather generator [Advanced WEather GENerator, AWE-GEN; Fatichi
et al., 2011], which makes use of meteorological records, provided by the Swiss
meteorological service (MeteoSwiss), across elevational and precipitation gra-
dients. A weather generator is required to obtain a smooth interpolation of
observed climate across elevation, which otherwise is not feasible, due to ir-
regular spacing of meteorological stations. The implemented methodology as
well as the validation of the generated climatic gradients with ground mea-
surements are detailed in Appendix C (Section C.1). In brief, thirty years of
synthetic hourly time series of solar radiation, precipitation, air temperature,
vapour pressure, cloud cover, atmospheric pressure, and wind speed are gen-
erated for two precipitation regimes, i.e., a dry, sheltered internal alpine valley
and a wet, exposed mountain side, and for elevations ranging from 500 to 2500

m a.s.l (Figure 4.1). While the selected environmental transects are nested within
the alpine region (i.e., prescribed latitude, day length, seasonality), they cover a
wide range of variations of meteorological conditions across elevation and pre-
cipitation regimes (e.g., mean annual values of precipitation from 600 to 2350

mm yr−1; temperature from -1 to 10 ◦C; and PAR from 65 to 82 W m−2), so that
they are representative of a broader set of meteorological forcings. In the fol-
lowing sections, simulation results are presented across the elevation gradient,
for the two examined wetness conditions. It is worth underlining that meteo-
rological input variables vary and co-vary in a coordinated manner respecting
the observed high-frequency (hourly) and climatological changes with elevation
(Figure 4.1).

4.2.3 Mimicking plant diversity

Plant diversity is included in our analysis through a Monte-Carlo framework,
sampling vegetation-related properties from the T&C parameter space. Proxy
plant species are generated combining: (i) three categories of plant-life forms,
deciduous, evergreen trees, and grass, reflecting structural and phenological
differences among plant species (Section C.2.1); (ii) three discrete plant drought
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Figure 4.1: Variation of the mean annual values of major environmental variables across
the examined precipitation (wet, dry), and elevation gradients over the 30 yr
of simulated climate. Boxes extend from the 25th to the 75th percentile, while
whiskers extend to 1.5 times the interquartile range of the lower and upper
quartiles respectively. PAR [W m−2] stands for Photosynthetically Active
Radiation.

tolerances (Table 4.1 and Section C.2.2); and (iii) four major leaf traits (Table 4.1
and Figure 4.2), constructed using a continuous spectrum of values across the
observed LES (Section C.2.3).

Differences in drought tolerance between species can be characterized using hy-
draulic limits [Sperry, 2000]. Three drought strategies (low, medium, and high
drought tolerance) are simulated varying not only the rooting depth and the
stomatal regulation but also the plant water-stress limits through variation of
soil water potential values at incipient stomatal closure and wilting point (Table
4.1). For each plant-life form (deciduous, evergreen, or grass) and plant-drought
strategy (low, medium, or high), 100 proxy species, each corresponding to a
unique set of parameters, were generated sampling coordinated leaf traits (Fig-
ure 4.2). More specifically, the following leaf traits are investigated: (i) critical
age for leaf shed, Acr; (ii) maximum Rubisco capacity, Vcmax, obtained through
the conversion from measured photosynthetic capacity rates, Amass (see Section
C.2.4); (iii) carbon-nitrogen mass ratio for the foliage, Nf; and (iv) plant specific
leaf area, SLA, using the empirical distributions and cross-correlations from
the GLOPNET database [Global Plant Trait Network; Wright et al., 2004]. The
sampled (proxy) plant species are not necessarily identical to real plant species,
but they preserve realism and leaf-level coordination reflected in the GLOPNET
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Table 4.1: Description of the parameters used for generating proxy plant species as well
as the main processes where they play a role (P: photosynthesis, R: respiration,
T: transpiration, TT: tissue turnover, VS: vegetation structure).

Process Parameter ID Units Description

P, T [-]
Empirical parameter in Leuning's equation for stomatal 

conductance.

P, T PSIss [MPa] Soil water potential at which stomatal closure begins.

P, T PSIwp [MPa]
Soil water potential at full stomatal closure (wilting 

point).

VS, T ZR95 [m] Rooting depth that contains 95% of the root biomass.

TT Acr [d] Critical age for leaf shed.

P Vcmax 2 s
-1

 m
-2

]
Leaf-level values of maximum Rubisco capacity at 25 
o
C.

R Nf [gC gN
-1

] Carbon-nitrogen mass ratio for foliage.

VS SLA [m
2
 LAI gC

-1
] Specific leaf area.

Drought tolerance

Leaf traits

database (Figure 4.2 and Figure C.7, C.8, C.9). A description of the sampling
procedure is detailed in Section C.2. In total 900 proxy plant species (3 plant-life
forms, 3 drought strategies, and 100 proxies with coordinated leaf traits) are
used in the simulations.

4.2.4 Variance partitioning

In order to partition the total variance of model outputs across the examined
sources of variation, namely trait variability and environmental heterogene-
ity, the variance of the conditional expectations (conditioning across the two
sources of variation) is estimated and normalized using the total (uncondi-
tional) variance. More specifically, the following importance measure is calcu-
lated: Sx =

Var[E[Y|x=xi]]
Var[Y] , where x is the (random) variable under consideration

(either trait diversity encapsulating variation in plant leaf-traits and drought tol-
erances, denoted by species, or environmental heterogeneity, represented by the
examined elevation and precipitation gradients, denoted by environ), xi refers
to a particular value in the domain of variation of the random variable x (e.g.,
elevation band of 500 m a.s.l., or one out of the 100 simulated proxy species
per drought tolerance and plant-life form), and Y is the examined model out-
put (e.g., photosynthetic activity, transpiration). Sx is therefore the percentage
of total variance that can be explained due to variability of x, and varies be-
tween 0 and 100% [see Pappas et al., 2013, for a detailed explanation of the use of
conditional variances of model outputs as importance measures]. Since species
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variability and environmental heterogeneity are treated as independent sources
of variation in this analysis (i.e., no interaction effects), the sum of the partial
variances is equal to the total output variance i.e., Sspecies + Senviron = 1.

4.2.5 Data

Three datasets were compiled in our analysis for a qualitative data-based assess-
ment of simulated model responses: (i) photosynthetic activity (Gross Primary
Production, GPP) estimated from eddy covariance technique across different ele-
vations and plant types, in the central European Alps (Switzerland and Italy), (ii)
MODerate Resolution Imaging Spectroradiometer (MODIS) estimates of GPP
and Leaf Area Index (LAI) in the European Alps, and (iii) estimates of forest
growth (i.e., net increase in forest biomass) of surviving trees in Switzerland,
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provided by Swiss National Forest Inventories [NFI; WSL, 2012]. A detailed de-
scription of the datasets and their preprocessing are detailed in Pappas et al.
[under review-a] as well as in Section C.3.

4.3 results

4.3.1 Species variability and long-term vegetation dynamics

The long-term mean response of simulated vegetation dynamics across the ex-
amined species variation and the elevation gradients is in a good qualitative
agreement with the data-based estimations of GPP and LAI from MODIS, and
in a good quantitative agreement with the few eddy covariance data points and
biomass estimates from forest inventories (Figure 4.3).

Species-induced variability, due to plant leaf-trait and drought tolerance varia-
tions, in the long-term simulated Gross Primary Productivity (GPP; Figure 4.3a,
b, c), Leaf Area Index (LAI; Figure 4.3d, e, f), and changes in the Above Ground
(woody) Biomass (∆AGB; Figure 4.3g, h), tends to prevail when compared to
differences imposed by elevation and precipitation gradients. At low elevations,
where environmental conditions are favorable for plant activity (Figure 4.1),
species variability enhances the variance of the simulated GPP, LAI, and ∆AGB.
As elevation increases, environmental conditions become “harsher” (Figure 4.1),
causing a tapering response of GPP, LAI, and ∆AGB (Figure 4.3). Species vari-
ability leads to coefficients of variation (defined as the ratio of the standard
deviation to the mean, averaged across the elevation gradient; expressed in %)
of simulated GPP, LAI, and ∆AGB, for the dry (wet) precipitation conditions of
about 48 (48), 42 (39), 46 (35) for deciduous trees, while for evergreen species
they are about 46 (53), 36 (43), 53 (60), respectively (Figure 4.3).

Species-induced variability in the dry precipitation gradient leads to lower plant
performance, when compared to wet environmental conditions because of the
stronger environmental constraints. For example, at the elevation band of 900 m
a.s.l., the simulated GPP averaged over proxy species, for deciduous, evergreen,
and grass plant-life forms and for dry (wet) wetness conditions is 960 gC m−2

yr−1 (1667 gC m−2 yr−1), 1063 gC m−2 yr−1 (1705 gC m−2 yr−1), and 828 gC
m−2 yr−1 (1928 gC m−2 yr−1) respectively (Figure 4.3a, b, c). This is because
resources availability (water) affects plant performance, highlighting the com-
petitive advantage of different drought strategies. Species with higher drought
tolerance outperform those with medium or low tolerance, leading to higher val-
ues of GPP, LAI, and ∆AGB. These results are more pronounced for evergreen
plant-life forms (Figure 4.3), mainly due to their phenology that allows them to
interact with climate over the entire year, as compared to deciduous or grass
plant-life forms that have a limited growing season (Acr; Figure 4.2p).
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4.3.2 Species variability and water fluxes

Evidence of species-induced variability on vegetation dynamics suggests that
such variability is expected to affect also biotic water fluxes (transpiration; Fig-
ure 4.4a, b, c) and related hydrological variables, such as total evaporation (Fig-
ure 4.4d, e, f) and soil water content (Figure 4.4g, h, i). This is shown by the
numerical experiments, though the effect is less pronounced. Across the dry
precipitation gradient, species-induced variability to simulated transpiration dy-
namics is smaller (e.g., the coefficient of variation averaged across the elevation
gradient is about 24% and 30% for evergreen and deciduous plant-life forms
respectively), when compared to wet conditions (e.g., the coefficient of variation
averaged across elevation of about 36% and 37% for evergreen and deciduous
species respectively), since the decreasing availability of water poses a strong
constraint to root water uptake. Under water-limiting conditions (low elevations
in the dry precipitation gradient; Figure 4.1a) the strategic advantage of species
with high drought tolerance becomes very clear (blue bars in Figure 4.4a, b, c).
Variability in simulated long-term transpiration losses due to species parameter-
ization is higher in evergreen plant-life forms than that in deciduous or grass,
due to their phenological dynamics (Acr; Figure 4.2p).

However, abiotic water fluxes (total evaporation; Figure 4.4d, e, f) as well as soil-
water dynamics (Soil Water Content available to plants, SWC; Figure 4.4g, h, i)
are mostly controlled by water availability -i.e., climatic conditions- rather than
trait parameterization. Total evaporation including all sources of water evapora-
tion (i.e., ground evaporation, evaporation and sublimation from the snowpack
at the ground, evaporation from intercepted water and snow) is mostly inde-
pendent from variation in plant traits (Figure 4.4d, e, f). Long-term variation
in simulated SWC shows low variability with plant parameterization in ample
water availability (wet precipitation gradient). The interactions between SWC
dynamics and species variability become more variable for the dry precipitation
gradient at low elevations. In precipitation-limited environments (Figure 4.1a),
different plant transpiration rates exert a stronger control on SWC dynamics
(Figure 4.4g, h, i).
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Figure 4.3 (previous page): Vegetation activity of proxy plant species across different el-
evation and precipitation gradients. Box-plots illustrate the
long-term variability (25 yr) of 100 generated proxy plant
species per plant-life form (deciduous, evergreen, and grass)
and per drought tolerance (low, medium, and high) for the
case of photosynthetic activity (GPP; a, b, c), leaf area dynam-
ics (LAI; d, e, f) and changes in woody aboveground biomass
(∆AGB; g, h, note that grass consists only of fine roots and
leaves, no wood components, thus it is not included in the
comparison). Red and blue box-plots illustrate the dry and
wet precipitation gradients respectively. Boxes extend from
the 25th to the 75th percentile, while whiskers extend to 1.5
times the interquartile range of the lower and upper quartiles
respectively. Bar-plots, included within each box-plot, depict
the response of proxy plant species, grouped according to
their drought tolerance. Light red, green, and blue fill colors
correspond to low, medium, and high drought tolerance re-
spectively. Bar-plots cover the 25th to 75th percentile of the
distribution. Dashed red and blue lines highlight the mean
model response across the elevation gradient (f(x = X), i.e.,
mean of the box-plots) as obtained using all the simulated
proxy species (x = X), while continuous lines illustrate the
obtained model response (f(x = X)) when only mean values
of the empirical distribution of plant trait are used (x = X),
for dry and wet precipitation gradients respectively. Vertical
lines with points in the middle, denoted in black, represented
estimates of GPP (mean ± standard deviation), as obtained
from eddy covariance measurements for several locations in
the European Alps with similar plant types and elevation (a,
b, c). Continuous black lines and shaded areas represent the
mean and the range of variation (mean ± standard deviation)
of vegetation variables across the elevation gradient based on
MODIS estimates from European Alps (a, b, c, for the case
of GPP; and d, e, f, for the case of LAI) and Swiss National
Forest Inventory estimates (NFI; g, h, for the case of ∆AGB).
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Figure 4.4 (previous page): Biotic (transpiration) and abiotic (total evaporation i.e., sum
of ground evaporation, evaporation and sublimation from the
snowpack at the ground, evaporation from intercepted water
and snow) water fluxes and soil water dynamics (soil water
content available to plants, SWC) across different elevation
and precipitation gradients, simulated using different proxy
plant species. Box-plots illustrate the long-term variability (25

yr) of 100 generated proxy plant species per plant-life form
(deciduous, evergreen, and grass) and per drought tolerance
(low, medium, and high) for the case of plant transpiration (a,
b, c), total evaporation (d, e, f) and soil water content (SWC, g,
h, i). Red and blue box-plots illustrate the dry and wet precip-
itation gradients respectively. Boxes extend from the 25th to
the 75th percentile, while whiskers extend to 1.5 times the in-
terquartile range of the lower and upper quartiles respectively.
Bar-plots, included within each box-plot, depict the response
of proxy plant species, grouped according to their drought tol-
erance. Light red, green, and blue fill colors correspond to low,
medium, and high drought tolerance respectively. Bar-plots
cover the 25th to 75th percentile of the distribution. Dashed
red and blue lines highlight the mean model response across
the elevation gradient (f(x = X), i.e., mean of the box-plots)
as obtained using all the simulated proxy species (x = X),
while continuous colored lines illustrate the obtained model
response (f(x = X)) when only mean values of the empirical
distribution of plant trait are used (x = X), for dry and wet
precipitation gradients respectively.

4.3.3 Species variability and aggregation-induced biases

Simulated carbon and water dynamics using an average proxy species, i.e.,
based on the mean values of the empirical distribution of plant traits, do not
correspond to the mean of model responses obtained using proxy species from
the entire plant trait distribution (solid and dashed lines in Figure 4.3 and 4.4).
When the mean parameterization is used, the simulated carbon dynamics are
consistently overestimated (solid lines in Figure 4.3). Simulated GPP, LAI, and
∆AGB with mean plant traits correspond often to the upper quartile, or even
to the tail of the distribution of the results obtained using the entire empirical
distribution of plant traits, underlining therefore positive aggregation-induced
biases due to smoothing of trait variability (solid and dashed lines in Figure 4.3).
Positive aggregation biases occur also for the case of biotic water fluxes (solid
and dashed lines in Figure 4.4a, b, c), but less pronounced in comparison to that
of the carbon dynamics. Since abiotic water fluxes are not significantly affected
by species-induced variability (Section 4.3.2), the occurring aggregation biases
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are smaller (solid and dashed lines in Figure 4.4d, e, f). Aggregation biases are
also less pronounced when soil water dynamics are analyzed, with the excep-
tion of dry precipitation gradient where negative biases are identified. More
specifically, in dry conditions the simulated SWC dynamics with an average
species are lower than the species mean across the elevation gradient and corre-
spond to the lower quartile of the full range of proxy species (solid and dashed
lines in Figure 4.4g, h, i).

4.3.4 Partitioning the output variance between climate- and species-induced variabil-
ity

In order to obtain a more traceable assessment of the importance of species vari-
ability, a variance decomposition was employed. This allows us to disentangle
the influence of the two sources of variation in our modeling framework, namely
heterogeneity in trait parameterization and climate.

As shown in Figure 4.3, simulated vegetation dynamics (GPP, LAI, and ∆AGB)
are mostly controlled by species-induced variability in evergreen and grass
plant-life forms. The variance decomposition shows that, particularly for the
case of evergreens more than 80% of the variance in GPP, LAI, and ∆AGB is
attributed to species parameterization (Figure 4.5a). In deciduous species, this
effect is less pronounced since environmental conditions prevail at high eleva-
tions and constrain their performance and occurrence (Figure 4.3a, d, g), over-
whelming the importance of trait variability (responsible for about 20-30% of
variability in GPP, LAI, and ∆AGB; Figure 4.5b). About 60% of the overall output
variance in long-term simulated GPP and LAI for species with grass plant-life
form is explained by trait variability. Environmental heterogeneity dominates
biotic water fluxes, particularly for deciduous and grass plant-life forms (Figure
4.5a, c), while for evergreens, trait-induced differences still explain about 40% of
the variability in annual transpiration (Figure 4.5b). Variability in abiotic water
fluxes (total evaporation and soil water dynamics), for all the examined plant-
life forms, is dominated by environmental conditions, which explain more than
90% of the total variance in evaporation and SWC (Figure 4.5).

4.3.5 Leaf traits and their contribution to simulated plant responses

The influence of leaf-trait variability and environmental heterogeneity on sim-
ulated carbon and water fluxes is illustrated in Figure 4.6 and 4.7. Among the
four examined leaf-traits (specific leaf area, SLA, carbon-nitrogen mass ratio for
the foliage Nf, maximum Rubisco capacity, Vcmax, and critical age for leaf shed,
Acr; Figure 4.2), Vcmax has a consistent influence on the long-term simulated
GPP (Figure 4.6) and transpiration (Figure 4.7) across all the examined environ-
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Figure 4.5: Partitioning of total variance in annual Gross Primary Productivity (GPP),
Leaf Area Index (LAI), changes in woody aboveground biomass (∆AGB),
transpiration, total evaporation, and Soil Water Content available to plants
(SWC) due to environmentally induced variability (i.e., elevation and pre-
cipitation gradients; depicted in orange) and trait variability (i.e., variability
in leaf-traits and drought strategies; depicted in green) for deciduous (a),
evergreen (b), and grass (c) plant-life forms.

mental conditions. For all plant-life forms, as Vcmax increases, annual GPP and
transpiration increase (Figure 4.6c, g, k, and 4.7c, g, k, respectively). The variabil-
ity in GPP induced by changes in Vcmax (i.e., horizontal axis in Figure 4.6c, g,
k) is comparable (and for the case of evergreen species higher) to the variability
due to environmental changes, expressed on the vertical axis in Figure 4.6c, g, k
by elevation. SLA, Nf, and Acr influence the model response but their relatively
high cross-covariance with Vcmax (Figure 4.2) that exerts a predominant role in
the model performance, does not allow for a clear signal in the surface plots
(Figure 4.6 and 4.7).

4.4 discussion

The results presented in the previous sections highlight the importance of in-
cluding floristic complexity (inter- and intra-specific trait variability) in terres-
trial ecosystem models for a realistic representation of interactions between cli-
mate, hydrology and vegetation dynamics. An important role of trait-specific
behavior, consistent across the examined climatic gradients, emerged from our
simulation results. While the limitations of the PFTs conceptualization are well
documented and widely recognized, our study, quantifies, for the first time in
a controlled numerical experiment, the importance of considering multivariate
trait distributions (accounting not only for the mean, but also for higher mo-
ments) in ecosystem modeling. An alternative, trait-based approach, is applied
and results are illustrated using a state-of-the-art mechanistic model that com-
bines land surface energy and water exchanges with plant functioning.
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Figure 4.6: Surface-plots of the long-term response (25 yr) of photosynthetic activity
(GPP) to environmental variability (summarized by elevation; vertical axis)
and to major leaf-traits (specific leaf area, SLA, carbon-nitrogen mass ratio
for the foliage Nf, maximum Rubisco capacity, Vcmax, and critical age for
leaf shed, Acr; horizontal axis). The reported annual GPP corresponds to
mean values over the precipitation gradients (wet, dry) and drought toler-
ances (low, medium, high).

4.4.1 Converging and diverging ecosystem responses to species-induced variability

Trait diversity leads to a broad range of plant functioning and thus to a highly
divergent vegetation response when carbon and water dynamics are analyzed.
Contrary to biotic, abiotic water dynamics show convergence with a relatively
modest influence of trait-specificity. Ecosystem carbon fluxes are more affected,
causing high variability in photosynthetic activity, leaf dynamics, and growth
rates. Since carbon and water cycles are tightly coupled at the plant level, trait-
induced variability also creates a divergent response of transpiration. In addi-
tion, different plant strategies for dealing with drought-tolerance (i.e., rooting
depth, water-stress thresholds, and stomatal regulation) enhance the variability
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Figure 4.7: Surface-plots of the long-term response (25 yr) of plant-water fluxes (tran-
spiration) to environmental variability (summarized by elevation; vertical
axis) and to major leaf-traits (plant specific leaf area, SLA, carbon-nitrogen
mass ratio for the foliage Nf, maximum Rubisco capacity, Vcmax, and criti-
cal age for leaf shed, Acr; horizontal axis). The reported annual transpiration
corresponds to mean values over the precipitation gradients (wet, dry) and
drought tolerances (low, medium, high).

of plant carbon and water dynamics, particularly in water-limited ecosystems
(i.e., dry precipitation gradient, low elevations; Figure 4.1a). Water deficit poses
constraints on plant functioning, forcing them to downregulate water-losses
(transpiration) and, as a consequence, carbon assimilation. For instance, for the
dry precipitation gradient, in the same elevation, species with high drought
tolerance outperform the ones with medium or low tolerances, as shown in Fig-
ure 4.3 and Figure 4.4a, b, c. These high divergent responses among species,
revealed by our controlled simulations, have been widely supported by field
observations. Some recent experimental evidence showed indeed how species-
specific sensitivities to environmental conditions (not only climate, but also nu-
trient availability as well as community effects) lead to different plant physiolog-
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ical responses in terms of carbon assimilation [Niu et al., 2012] and transpiration
[Link et al., 2014].

4.4.2 Variety versus evenness: the fallacy of averages and the emerging aggregation
biases

Using a Monte-Carlo framework for mimicking plant diversity, our analysis
quantifies explicitly the aggregation-induced biases due to smoothing for species
variability and supports the idea that higher moments of the empirical trait dis-
tribution deserve further consideration. Parameterizing plant functioning using
mean values of observed trait distribution hides the inter- and intra-specific
trait variability that is often not negligible, as shown by our experiments and
supported by recent literature [Albert et al., 2010a, b; Messier et al., 2010; Albert
et al., 2011; Bolnick et al., 2011; Cadotte et al., 2011; Violle et al., 2012; Kichenin
et al., 2013]. As some recent experimental evidence demonstrates: “the amount of
variation around the mean trait value of a species can be as important as the mean it-
self ” [Messier et al., 2010]. Biodiversity and floristic complexity that are reflected
in higher moments (e.g., variance) of the trait distribution [Ackerly, 2003; Webb
et al., 2010; Violle et al., 2012] can be incorporated in terrestrial ecosystem mod-
els, as our study demonstrates, to obtain a more realistic representation of the
vegetation component.

Parameterizing species diversity using discrete categories with prescribed (and
static) properties is hampered by the nonlinearities of vegetation functioning.
Even when the mean values of the empirical (observed) trait distributions are
used [mean-field approach; Violle et al., 2012], the high nonlinearities of biophys-
ical and plant physiological processes (e.g., stomatal conductance and photosyn-
thesis coupling) downgrade the information content of the first moment of the
distribution [Jensen’s inequality; Jensen, 1906] leading to the so called fallacy of
averages [Wagner, 1969; Welsh et al., 1988; Pappas et al., under review-a]. Aggre-
gation biases therefore emerge when average plant parameterizations are em-
ployed such as the case of using a handful of discrete PFTs. The mean response
of highly diverging plant characteristics does not necessary coincide with the
response obtained using mean plant attributes, as clearly highlighted in Section
4.3.3 and Figure 4.3 and 4.4. Even though mean values of detailed plant phys-
iological properties are often used for model-data comparisons, e.g., to match
observations from eddy covariance fluxes, they have a limited predictive power
due to nonlinearities of the processes in which they are involved [Medlyn et al.,
2002b; Laughlin et al., 2011].
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4.4.3 Species variability outweighs environmental heterogeneity

While the dominant role of climate in biological processes is indisputable, since
climatic and energetic factors can limit plant functioning, occurrence, and per-
formance [Paruelo et al., 1999; Kleidon and Mooney, 2000; Körner, 2000; Kleidon et al.,
2007, 2009; Reu et al., 2011; Araújo and Costa-Pereira, 2013; Gao et al., 2013; Hurlbert
and Stegen, 2014], our analysis brings quantitative evidence that species repre-
sentation plays a significant role in ecosystem responses. When plant carbon-
and water-dynamics are jointly analyzed, species variability is often compara-
ble to climate-induced heterogeneity (Figure 4.5). This contrasts with the much
larger attention that has been paid to the environmental forcing in the realm
of Earth system modeling, especially with regard to analyses of interactions
between climate, hydrology and ecosystems.

It is true that living organisms do not experience climate in coarse resolution
[Potter et al., 2013]. There has been a great effort therefore during the last decade
towards finer resolution meteorological forcings which was reflected in the in-
creasing spatial resolution of climate model outputs [from 500 km at the be-
ginning of ’90s to 50 km at the end of 2010; Jones, 2013] or through the de-
velopment of high-resolution modeling tools [Tague and Band, 2004; Ivanov et al.,
2008a; Hwang et al., 2009; Wood et al., 2011; Fatichi et al., 2012a; Pappas et al., under
review-a]. The spatial resolution of environmental forcing, in global scale appli-
cation (e.g., with ESMs and DGVMs), has been therefore increased by roughly
one order of magnitude. On the contrary, an equivalent change did not happen
with respect to modeling plant diversity. Even the carbon cycle analyses in the
Fifth Assessment Report (AR5) of the United Nations Intergovernmental Panel
on Climate Change are still based on a handful of PFTs [IPCC, 2013, Ch. 6]. This
uneven progress in model developments between boundary conditions and en-
vironmental drivers on the one hand, and floristic complexity, on the other, does
not provide the appropriate framework to highlight the mechanisms that con-
trol terrestrial ecosystem dynamics. Simulated carbon- and water-dynamics are
strongly controlled by species-specific attributes. There is therefore a compelling
need -especially in studies focusing on the response of vegetation to climate
change- for enhancing the ecological realism within models by accounting for
inter- and intra-specific trait variability, as well as for how traits evolve, e.g.,
plant adaptation, dispersal, and community dynamics [see for example Norberg
et al., 2012, where these aspects are highlighted].

4.4.4 Broader implications and ways forward

Trait variation can change the outcome of ecological responses and therefore de-
serves further consideration in local and global scale assessments, for instance
when the response of terrestrial ecosystem under extremes [Reichstein et al., 2013;
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Bahn et al., 2013], or global carbon cycle dynamics [Cox et al., 2013; Graven et al.,
2013] are analyzed. Redundancy in plant traits and functioning has, however,
also broader implications. Biodiversity is intrinsically coupled with plant physi-
ological responses [see Hooper et al., 2005, for a detailed review]. There is grow-
ing experimental evidence that species diversity enhances productivity [Tilman
et al., 1997; Tilman, 1999; Hector et al., 1999; Grace et al., 2007; Morin et al., 2011]
and affects ecosystem resilience [Naeem and Li, 1997; Peterson et al., 1998; McCann,
2000; Pfisterer and Schmid, 2002; Díaz et al., 2006; Tilman et al., 2006]. These effects
should therefore be accounted for in climate change studies that investigate
plant extinction risks, species range shifts or carbon source-sink dynamics.

Building upon the community ecology, trait-based approaches have been re-
cently articulated for dealing with plant functional dissimilarity within terres-
trial ecosystem models (aDGVM2, Scheiter et al. [2013]; JeDi, Pavlick et al. [2013]).
Along these lines, we would like to advocate the need for: (i) incorporating
species inter- and intra-specific variability using multi-trait spectra (Table 4.1),
(ii) parameterizing plant functioning preserving the entire empirical multivari-
ate distribution of plant-trait variation (Figure 4.2) rather than preserving, at
best, only the first moment of the distribution, (iii) communicating model simu-
lation results in a probabilistic manner (e.g., Figure 4.3 and 4.4) rather than pro-
viding single-value outputs (obtained using discrete and static plant attributes).
In this regard, insightful simulations would profit from knowing not only the
probability distributions of plant traits and their cross-correlations, but also their
frequency of occurrence in different geographical areas. Remote sensing is in
this respect a promising observational technique.

Plant trait spectra are not panacea, but offer a remedy for increasing the level
of plant functional diversity within models. Following the recently popularized
traits manifesto [Reich, 2014], an integrated whole-plant economics spectrum
will allow for an elegant approximation of plant attributes within terrestrial
ecosystem models. The origin of LES is still an open question and several hy-
pothesis have been proposed [see Sack et al., 2013, for a recent review]. Some
trait cross-correlation may be spurious [Jasienski and Bazzaz, 1999; Osnas et al.,
2013; Lloyd et al., 2013], and the identified correlations do not necessary imply
causalities [Osnas et al., 2013; Lloyd et al., 2013]. Nonetheless, accounting for the
observed trait variances and covariances within models improves model consis-
tency, since it allows for a realistic representation of plant responses to resources
availability thus unfolding whole plant economic strategies with respect to wa-
ter, light, and nutrients [Westoby et al., 2013; Poorter et al., 2014]. While traits cor-
relations have been partly already implemented in DGVMs -for example SLA
is calculated through leaf longevity using an empirical relation presented in Re-
ich et al. [1997] in the LPJ [Sitch et al., 2003]- or by constraining the parameter
space using observed leaf-trait covariances [Wang et al., 2012], these implemen-
tations are of deterministic nature. We would like to emphasize the need for a
probabilistic approach for simulating plant diversity, which propagates the ob-
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served whole-plant multivariate trait distribution within models and not only
cross-correlations among traits. Our analysis illustrates this approach by gen-
erating proxy plant species from an observed leaf-trait pool. This concept is
well established within the frame of uncertainty analysis [e.g., Ziehn et al., 2012;
LeBauer et al., 2013] and Bayesian inference [Clark, 2004; Clark and Gelfand, 2006;
Hartig et al., 2012; Efron, 2013], but with different objectives. Here, we are not
searching for the best parameter set (i.e., proxy species) that reproduces the ob-
served responses (single-value outputs), but we propagate into the model the
observed empirical multivariate trait probability distribution by Monte-Carlo
simulations, since all the observed (measured) trait values have a probability
of occurrence, related to the trait distribution in a given area. In this way, we
obtain realistic, probabilistic representation of ecosystem responses. The increas-
ing data availability [e.g., Reich, 2014, for a recent review] and monitoring tech-
niques (e.g., remote sensing, Homolová et al. [2013]; plant phenotyping platforms
Granier and Vile [2014]) facilitate the identification of probability distributions
underlying multi-trait spectra and thus the applicability of such probabilistic
approaches.

4.4.5 Uncertainties and limitation

Species richness is approximated in our simulations using three plant-life forms
(deciduous, evergreen, and grass), three discrete plant drought strategies (low,
medium, and high drought tolerance), and 100 proxy-species with coordinated
leaf traits based on empirical statistical properties from the LES. This is a mod-
erate, first approximation of species diversity. Several (continuous and not dis-
crete) plant drought strategies exists and the LES covers only 1% of the docu-
mented vascular plant species [Wright et al., 2004]. Therefore, evidence from our
results can potentially be more pronounced especially when whole-plant trait
spectra are used, accounting for trait variation in other organs apart from leaf
(e.g., root, sapwood). At the same time, we also assume that traits are following
the LES distribution without weighting the values according to the frequency
of species occurrence. This may increase the overall trait variability, particularly
for the evergreen plant-life form, affecting also the variance partitioning (Figure
4.5).

Our analysis is moreover characterized by few additional limitations due to
the numerical tools used for simulating ecosystem responses. More specifically,
T&C simulates vegetation in a mature state without accounting for plant com-
petition, establishment and mortality different from carbon starvation. The re-
sponse of each proxy-species is also tested in isolation, ignoring the demo-
graphic effects related to species establishment and competition, community dy-
namics, as well as disturbances. Nutrient limitations, although very important
[Fernández-Martínez et al., 2014], are not directly simulated in T&C. Finally, while
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biotic and abiotic factors are intrinsically coupled in nature [land-atmosphere in-
teractions and feedbacks; Pielke et al., 1998; Pielke, 2001; Currie, 2007; Field et al.,
2007; Bonan, 2008b; Chapin et al., 2008; Seneviratne et al., 2010; Pielke et al., 2011;
Kichenin et al., 2013], in these simulations environmental conditions (model in-
put) and species representation (model parameters) are independent, i.e., plant
traits do not affect the climatic forcing, and vice versa. This is a simplified as-
sumption since prevailing environmental conditions and nutrient availability
at a given site can shape plant functional traits [e.g., Díaz et al., 1998; Savage
et al., 2007; Ordoñez et al., 2009; Messier et al., 2010; Cadotte et al., 2011; Wright and
Sutton-Grier, 2012; Kichenin et al., 2013]. However, this assumption allows for a
complete variance decomposition of model outputs (Figure 4.5). Carbon- and
water-fluxes and their variation across elevation, are also reasonably simulated
as illustrated by the good agrement with the compiled eddy flux measurements,
MODIS, and NFI data. Thus, we are persuaded that the conclusions of our study
are not significantly affected by the aforementioned assumptions.

4.5 conclusions

To the question if plant diversity matters with regard to the simulated ecosys-
tem responses, our conclusions are three-fold: (i) simulated carbon dynamics are
strongly conditioned by trait-specific attributes; (ii) transpiration is also affected
but to a lesser extent; and (iii) abiotic water fluxes are generally unaffected by
trait-induced variability. These findings highlight the need for revising the rep-
resentation of biotic attributes (species representation) within terrestrial ecosys-
tem models, moving beyond the discrete and static conceptualization of PFTs
and the associated limitations. Alternative, probabilistic approaches should be
thus adopted, which mimic the floristic complexity using multivariate distribu-
tions of coordinated whole-plant trait spectra, enhanced with trait abundance
information from remote sensing. This will allow for a better representation
of terrestrial ecosystem dynamics and their responses under climate variabil-
ity.



5
C O N C L U S I O N S A N D O U T L O O K S

5.1 major conclusions

5.1.1 On a comprehensive model evaluation

Process-based numerical models of terrestrial ecosystem functioning are nec-
essary tools for an holistic understanding of water and carbon dynamics and
the underlying mechanisms and feedbacks. However, they are often character-
ized by high complexity and dimensionality due to the multiple encapsulated
processes, ranging for example from the leaf level (e.g., photosynthesis, transpi-
ration), to the stand scale (e.g., plant resource competition), to the landscape
(e.g., disturbances such as fire events) and beyond. Therefore, model intercom-
parison studies and model evaluation against observations are not enough for
scrutinizing model strengths and weaknesses. Mimicking terrestrial ecosystem
dynamics imply more than a simple agreement with observed variables, espe-
cially when long term or climate non-stationary quantitative predictions are
envisioned.

Advanced statistical tools, such as the global sensitivity analysis presented in
Chapter 2, offer an elegant way for a comprehensive evaluation of high dimen-
sional, non-linear models, assessing not only the importance of model param-
eters, but also model structural limitations. Since process-based tools embed
physical causalities, the sensitivity of the simulated processes should reflect the
observed, real-world sensitivities. Using state-of-the-art statistical methodolo-
gies I could show that photosynthesis is the cornerstone of LPJ-GUESS, and
possibly of other, structurally similar, dynamic vegetation models. Simulated
vegetation carbon fluxes and pools are highly sensitive to plant physiological
parameters related to photosynthesis. At the same time, the sensitivity to pa-
rameters controlling water availability was found to be very low. Both of these
results highlighted the urgent need for (i) revising vegetation models with re-
gards to the representation of spatial heterogeneities and soil water dynamics
and feedbacks (issue addressed in Chapter 3), (ii) enhancing the representation
of plant trait variability that significantly control vegetation responses such as
carbon assimilation (issue addressed in Chapter 4).

93
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5.1.2 On the spatial heterogeneities and boundary conditions

By spatially disaggregating a dynamic vegetation model and applying it at the
catchment scale, where multivariate observations are available, I quantified how
the coarse spatial representation leads to aggregation-induced biases (Chapter
3). A novel ecohydrological scheme (D-LPJ) was developed, operating at a fine
spatial resolution, using not only detailed meteorological inputs, but also en-
hanced, spatially explicit representations of vertical and lateral water fluxes as
well as local scale information of the current land cover.

Combining tools with contrasting degrees of abstraction and spatiotemporal
representations, I could show that local scale spatial heterogeneities, which are
often ignored or at best crudely represented in model applications at the re-
gional and global scales, exert a strong control on plant response. Preservation
of local environmental and topographic attributes, as proposed with the fine
resolution grid of the D-LPJ model, represents therefore an important feature to
achieve a more realistic approximation of ecosystem dynamics, particularly at
the regional or catchment scales with complex topography.

Model initialization using local scale information is also crucial, since the bound-
ary conditions (soil and vegetation carbon stocks in particular), affect the long
term terrestrial carbon balance, as well as the capacity of the forest to store car-
bon. A realistic assessment of future carbon stocks cannot be separated from
an accurate representation of these heterogeneities and local scale trajectories.
The assumption of steady-state vegetation and soil carbon pools, incorporated
in vegetation models for pragmatic reasons, needs therefore to be revised, and
eventually replaced using local scale information, incorporating tree demogra-
phy inputs from forest inventories, as for example the results of D-LPJ simula-
tions highlight, or using advanced remote sensing products.

Ecosystems are often out of equilibrium and do not experience climate at coarse
scales, but react to local controls, particularly with respect to soil-vegetation
interactions. When process-based models are therefore used, and confidence on
their results is based on their “physical-correctness and consistency” as well as
the embedded causalities, then the “physics” should be solved at appropriate
scales with appropriate forcings.

5.1.3 On the ecological realism and species variability

Vegetation diversity in many terrestrial ecosystem models is crudely repre-
sented using a discrete classification of a handful of “plant types” (named Plant
Functional Types; PFTs). The parameterization of PFTs typically reflects mean
properties of observed plant functional traits over broad categories ignoring
most of the inter- and intra-specific trait variability. A novel Monte Carlo frame-
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work was developed to address this issue, simulating proxy plant species from
observed multivariate trait distribution, and assessing their performance across
continuous environmental gradients with a mechanistic ecohydrological model
(Chapter 4).

Having investigated the sensitivity of ecosystem responses to species-induced
variability and compared it with climate-induced variability, the importance
of species diversity in simulated carbon and water dynamics was quantified.
Species diversity leads to highly divergent vegetation carbon dynamics (fluxes
and pools) and to a lesser extent water fluxes (transpiration). Abiotic processes,
such as soil water dynamics and evaporation, are only marginally affected.
These findings highlight the need for revising the representation of biotic at-
tributes (species representation) within terrestrial ecosystem models, moving
beyond the discrete and static conceptualization of PFTs and the associated lim-
itations.

Floristic complexity (inter- and intra-specific trait variability) should be en-
hanced in terrestrial ecosystem models in order to achieve a realistic representa-
tion of interactions between climate, hydrology and vegetation dynamics. Proba-
bilistic approaches, based on empirical multivariate distributions of coordinated
plant trait spectra, as presented in Chapter 4, provide a viable alternative. This
will allow for a better representation of terrestrial ecosystem dynamics, as well
as their responses and resilience under climate variability.

5.2 outlook for further research

5.2.1 Towards better resource allocation schemes

Carbon allocation remains the Achilles’ heel of vegetation models [Le Roux et al.,
2001]. As demonstrated by the detailed sensitivity analysis, presented in Chap-
ter 2, the generally simplistic and static carbon allocation schemes underlying
current terrestrial ecosystem models (from plot scale forest growth models, to
catchment scale ecohydrological representations, and to regional and global
scale dynamic vegetation models) create high sensitivity of plant functioning
and growth to photosynthesis, neglecting processes such as carbon reserve dy-
namics and direct growth limitation by temperature, water, or nutrient. Such
processes may have a significant implications for many studies assessing for ex-
ample the source or sink dynamics of forested areas or the ecosystem resilience
under changing environmental conditions.

Several approaches for modeling resources allocation (carbon and nutrients)
have been proposed, and reviewed by Cannell and Dewar [1994] as well as re-
cently by Franklin et al. [2012]. Five main categories can be distinguished, fol-
lowing the classification presented by Franklin et al. [2012], namely: (i) empirical
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approaches, using data-derived fix ratios of resource partitioning among plant
organs; (ii) allometric scaling approaches, using for example species specific
allometric relations documented by forest inventories; (iii) functional balance
approaches where resources are allocated on the basis of the limiting environ-
mental factor (e.g., under water-limited conditions, more resources are allocated
to water-abstraction organs); (iv) eco-evolution based approaches including opti-
mality principles, game-theory, and adaptive population dynamics; (v) thermo-
dynamic approach, using the well established principle of Maximum Entropy
Production (MEP).

Unfortunately, within the frame of vegetation modeling, not all the aforemen-
tioned approaches have been implemented and extensively tested. A common
practice in vegetation models is to model resource allocation as a static compo-
nent, using mostly the empirical and static allometric rules, enhanced, in some
cases, with predefined environmental controls such as water or light. The results
presented in Chapter 2 highlight the urgent need for revising such approaches
since they do not allow for comprehensive modeling of plant functioning and
thus for robust long-term carbon dynamics (fluxes and stocks).

Allocation cannot be considered as an individual process, such as for example
photosynthesis, but emerges as a consequence of several coordinated processes
[Franklin et al., 2012; Mäkelä, 2012]. In addition, defining the way in which plants
allocate their resources to different organs implies defining not only their eco-
logical strategy, but also their structural advantages over other species [Le Roux
et al., 2001; Franklin et al., 2012]. In this regard, the formalism of MEP offers a
great potential for a more tractable simulation of plant resource dynamics, im-
posing a well-established top-down guiding principle to plant functioning. It
is worth therefore to be implemented and tested in vegetation modeling stud-
ies. The increasing data availability of forest architecture and demography, e.g.,
through forest inventories and modern remote-sensing data, offers a great po-
tential of evaluating such approaches at larger simulation domains. A better
representation of plant resource allocation within terrestrial ecosystem models
will enhance our understanding of forest growth and the intrinsically coupled
carbon and water dynamics.

5.2.2 Towards better up-scaling approaches

Having gained insights into the magnitude of aggregation-induced biases due to
smoothing of spatial heterogeneities, hereafter I advocate the need of solving the
processes at the appropriate scales, when bottom-up modeling tools are used.
This is particularly true when topographically complex landscapes are analyzed
(Chapter 3). Organisms do not experience climate in coarse scales [Potter et al.,
2013]. Therefore a more realistic representation of spatial heterogeneities within
process-based terrestrial ecosystem models should be implemented. This can be
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done, as presented in Chapter 3, using a fine resolution spatial representation,
accounting for topographic attributes, lateral water fluxes, and local scale land
cover, following the process-based ecohydrological paradigm. However, when
larger domains are examined, the computational burden often poses limitations
on the applicability of such numerical tools.

If solving processes at the appropriate scales is computationally too demand-
ing, given the available resources, then alternative, statistical and/or top-down
approaches may represent a conceptually better approximation of the function-
ing of global scale terrestrial ecosystem. For instance, a statistical-dynamical ap-
proach [e.g., Giorgi and Avissar, 1997] can be incorporated in terrestrial ecosystem
modeling using the observed (empirical) probability density function of local
scale attributes, thus describing the heterogeneity of the meteorological forcing
in the examined domain, or that of vegetation traits [Reich, 2014; Pappas et al.,
under review-b]. The potential of using well established approaches from other
disciplines dealing with complex non-linear systems, such as the scale transition
theory developed within the frame of population and community ecology [Ches-
son, 2012], the multiscale modeling and simulation framework developed explic-
itly for dealing with non-linear, multidimensional hierarchical systems [Chopard
et al., 2014], as well as organizing principles [e.g., Prentice et al., 2014; Dyke and
Kleidon, 2010; Dewar, 2010; Dewar et al., 2009; Whitfield, 2007; Mäkelä et al., 2002],
is also worth to be explored. Similarly to the thermodynamic approach of mod-
eling resources allocation (Section 5.2.1), organizing principles can provide a
top-down constrain to simulated ecosystem responses at large scales, correcting
therefore potential aggregation-induced biases due to scale mismatches. The ap-
plicability and efficiency of organizing principles, such as the MEP [e.g, Dewar
and Porté, 2008; Dewar, 2009, 2010; Kleidon, 2010] has already been extensively
demonstrated at local scales [e.g., Schymanski et al., 2010] and remains to be
further explored at global scale and for terrestrial ecosystem simulations.

5.2.3 Towards a predictive framework of terrestrial ecosystem responses

Numerical models of terrestrial ecosystem functioning are developed not only
for purely scientific curiosity, i.e., better process understanding, but ultimately
for societal purposes, through a predictive framework of ecosystem responses
under climate variability and anthropogenic interventions. To this end, synthe-
sizing the results and outlooks articulated in the previous Sections, I would con-
clude that a predictive framework of terrestrial ecosystem functioning is possi-
ble only by confining our process understanding with probabilistic theory.

Three definitive arguments towards this direction are summarized below:

• Fixed values vs random variables
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Natural processes are approximated in models using parameters. The
word parameter is not chosen by chance; it comes from the Greek word
par� meaning beside, beyond, and mètron, meaning measure1. In essence,
parameters are used to describe and infer properties that go beyond mea-
surements. Even in process-based models, where parameters are often
claimed to have a physical meaning, the spatiotemporal scale mismatch
between measurements and model applications hampers direct inference
of parameter values from observations. Furthermore, the spatiotemporal
heterogeneities, together with inter- and intra-specific variability of plant
traits, make the extrapolation of plot-scale observations to the simulation
domain even more difficult. Therefore, parameters should be treated as
random variables, using well-established concepts of probabilistic theory
rather than discrete and static values inferred from observations.

• Mean values vs entire probability distribution

Assigning parameter values based on the empirical mean of the observed
values may be misleading due to the non-linearities of the simulated pro-
cesses, leading to the, so called, fallacy of averages. This is demonstrated in
Chapter 3, where the aggregation-biases caused by the smoothing of spa-
tial heterogeneities are quantified, as well as in Chapter 4, where the im-
portance of the higher moments in the plant trait distribution is discussed.
By prescribing not only the mean but also higher moments of empirical
distribution of the random variables (model parameters), would therefore
allow for a better system representation. In addition, this will allow for a
better representation of the underlying uncertainties, single-value model
outputs would be replaced with probabilistic statements, following the
distribution of the simulated outputs.

• Static vs dynamic parameterizations

Motivated by the aphorism of Theodosius Dobzhansky that “nothing in
biology makes sense except in the light of evolution” [Dobzhansky, 1973], I would
argue that the static parameterization of plant activity, ignoring short- and
long-term plant physiological adjustments is a major drawback for current
vegetation models analyzing the long-term terrestrial ecosystem responses.
Parameterizing plant activity by means of random variables together with
top-down thermodynamic constraints such as the MEP, will allow for a
more mechanistic representation of short- and long-term plant adaptive
dynamics and their implications for the carbon and water cycle.

1http://en.wikipedia.org/wiki/Parameter
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P R O C E S S - B A S E D E C O S Y S T E M M O D E L : P I N P O I N T I N G
PA R A M E T E R I Z AT I O N A N D S T R U C T U R A L I S S U E S

a.1 screening exercise : elementary effects

Screening methodologies provide adequate qualitative information of model
sensitivity with low computational cost [Saltelli et al., 2000a]. The basic idea
of screening approach is based on the Pareto’s principle. Many studies have
shown that model structures tend to have few very influential parameters and
a majority of non-influential ones [Saltelli et al., 2000a].

A special case of screening sensitivity analysis is the method of elementary ef-
fects (EE) which was originally proposed by Morris [1991]. The method is based
on individually randomized many one-at-a-time designs. One-at-a-time design
is refereing to a design where one parameter is changing each time while keep-
ing all other fixed. After the permutation, the parameter is fixed back to its
standard value (baseline). The same applies sequentially to all the examined
parameters. Derivatives with wide range of variation are calculated over the pa-
rameter space and their average values are used to provide a global sensitivity
metric. Assuming that Y = f(X) is a generalized model and X = {X1, . . . ,Xk} is a
vector of parameters (random variables), where k is the total number of investi-
gated parameters, then each of the random variables is assumed to vary across
p selected levels of its uncertainty range. Thus, the parameter space consists of
a k−dimentional p−level grid. The EE of the ith parameter is defined as

EEi =
Y(x1, . . . , xi +∆, . . . , xk) − Y(x1, . . . , xk)

∆
(A.1)

where {x1, . . . , xk} is a realization of the random variables {X1, . . . ,Xk}, repre-
senting a point in the k-dimensional p−level grid and ∆ is the variation size
taking values in {1/(p− 1), . . . , 1− 1/(p− 1)}. Note that capital letters are used
for random variables, small letters for their realizations and bold for vectors and
matrices.

The basic statistics, mean (µEE) and standard deviation (σEE), of a number of
incremental ratios (EE), are the sensitivity measures suggested by Morris for
parameter ranking. The mean of EE, µEE, is proposed by Morris [1991] as an
estimator of the overall influence of a parameter to the output, and the standard
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deviation of EE, σEE, as an indicator for the higher-order parameter effects. The
total cost of the analysis (model evaluations) depends on the number of parame-
ters (k) and the number of randomly generated trajectories (r), i.e., EE calculated
for each parameter, and it is calculated as r× (k+ 1). As previous experiments
have demonstrated [Campolongo and Saltelli, 1997; Campolongo et al., 1999; Saltelli
et al., 2000a, 2008], a reasonable choice of r, p, and ∆, which we also adopted for
this study, is r = 10, p = 4, and ∆ = p/[2(p− 1)] = 2/3.

The importance of model parameters is categorized according to µEE and σEE in
three types: (i) negligible (low values of µEE, σEE), (ii) linear and additive (high
values of µEE and low values of σEE) or (iii) non-linear or involved in interac-
tions with other parameters (high values of σEE). For an easier interpretation
of the results, Morris suggested a graphical representation: µEE and σEE estima-
tors for each parameter are displayed in a plane (scatterplot) whose Cartesian
coordinates are the (µEE, σEE) pairs.

The recent improvements suggested by Campolongo et al. [2007] are also applied
to the original Morris experiment. The absolute mean value of EE (µ∗EE) is used
instead of µEE. As Campolongo et al. [2007] demonstrated, µ∗EE is considered as
more robust sensitivity metric especially for the case of non-monotonic func-
tions. Furthermore, in order to maximize the coverage and the spread of the
sampled points in the k−dimentional p−level grid, we first generated R = 1000

trajectories and the r = 10 trajectories with the highest spread (i.e., highest rel-
ative distance among them) were finally selected [Campolongo et al., 2007]. Max-
imizing the spread of the trajectories, improves the coverage of the sampling,
without increasing the computational cost of the method (i.e., number of model
evaluations). In this study, to facilitate the interpretation of the results and the
ranking of parameters, instead of using (µEE, σEE) plots suggested by Morris,

the Euclidian distance, ε =
√
µ∗EE

2 + σ2EE, of (µ∗EE, σEE) from the origin (0, 0)
was used for parameter ranking. In the case of non-linearities and parameter
interactions, this is a fair approximation of overall parameter sensitivity.

a.2 variance-based sensitivity analysis

Variance-based sensitivity methods are elegant tools for performing model-free,
coherent and quantitative Global Sensitivity Analysis (GSA). The underlying
assumption is that all the information about model uncertainty is captured by
its variance. The aim is to apportion a fraction of the overall output variability to
each of the model parameters (conditional variances), accounting also for their
interactions.

Sobol’ sensitivity indices are based on Sobol’s variance decomposition [Sobol’,
1993] and offer a thorough evaluation of parameter importance and interactions.
First and higher order effects are explicitly assessed after a detailed, compu-
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tationally expensive, travel across the multidimensional parameter space. The
method of Sobol’ is based on the traditional analysis of variance (ANOVA)
[Archer et al., 1997]. In summary, a function (i.e., the model response), Y = f(X)
is decomposed through a functional ANOVA into summands of increasing di-
mensionality:

f(X) = f(X1, . . . ,Xk) =
= f0 +

k∑
i=1

fi(Xi) +

k∑
i=1

k∑
j>i

fij(Xi,Xj) + . . .+ f12...k(X1, . . . ,Xk) (A.2)

Obviously, there are many different ways to decompose f(X) in the form of
Equation A.2, but provided that (i) the vector X consists of independent param-
eters, (ii) f0 is a constant (f0 = E[Y]) and (iii) all the other terms in Equation
A.2 are selected such that they are square integrable with zero mean, then the
decomposition is unique [Sobol’, 1993]. Once we square and integrate the Equa-
tion A.2, we can partition the total output variance, VY , into terms of increasing
dimensionality:

VY = V[Y] = V[f(X)] =
k∑
i

Vi +

k∑
i=1

k∑
j>i

Vij + . . .+ V12...k (A.3)

where Vi = V[E[Y|Xi = x∗i ]] , Vij = V[E[Y|Xi = x∗i ,Xj = x∗j ]] − Vi − Vj , and so
on. E[· | ·] is the conditional expectation, and x∗i , x

∗
j denote the real values of the

parameters i and j, respectively. In other words, similar to the ANOVA concept,
the total output variance is partitioned to different sub-components which con-
tribute to the overall output variability [Archer et al., 1997; Chen et al., 2005]. The
sensitivity indices are then derived as the ratios of partial variances contributed
by specific parameters of interest over the total output variance:

1 =

k∑
i

Si +

k∑
i=1

k∑
j>i

Sij + . . .+ S12...k (A.4)

where Si is the first order sensitivity index (or main effect) of the ith parame-
ter, Sij is the second order sensitivity index which represents the interactions
of the ith and jth parameters and so on. Accordingly, the total sensitivity in-
dex, STi which represents the overall parameter importance (first and higher
order effects), for the orthogonal case (i.e., independent parameters) is the sum
of all the sensitivity indices of Equation A.4 that include the ith parameter
[Saltelli et al., 2004]. The first and total order sensitivity indices are estimated
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since they include the most essential information and they offer a robust estima-
tion of parameter importance and interactions [Homma and Saltelli, 1996; Saltelli,
2002].

The first order sensitivity index of parameter Xi is defined as:

Si =
Vi
VY

=
V[E[Y|Xi]]

V[Y]
(A.5)

The variance of the conditional expectation V[E[Y|Xi]], known also as main ef-
fect, represents the expected variance reduction that could be achieved when
Xi would become perfectly known (i.e., Xi = x∗i ). The expectation of model re-
sponse Y over the entire variation interval of Xi (i.e., E[Y|Xi]) is used since we are
not able to know the real value x∗i for each parameter Xi. First order sensitivity
indices represent the main effect contribution of individual parameters to the
output variance [Saltelli et al., 2008] and are therefore considered an agile mea-
sure for sensitivity assessments, but they are not enough for a rigorous GSA
since quantification of higher order effects may be also important [Chan et al.,
1997].

Total order sensitivity indices attempt to bridge this gap by estimating not only
first but also higher order effects. According to variance decomposition pre-
sented in Equation A.3, the total effect index of the ith parameter can be ex-
pressed as: STi = Si +

∑k
j 6=i Sij + . . .+ S12...k. This theoretical definition of total

effect is not very useful for practical applications since it implies the estimation
of the 2k− 1 terms in Equation A.4. Nonetheless, STi can be calculated based on
the following statistical identity [Papoulis, 1965]:

V[Y] = V[E[Y | Xi]] + E[V[Y | Xi]] (A.6)

If we substitute in Equation A.6 the parameter Xi with the vector X∼i which
refers to a vector of all the random variables (i.e., parameters) but the ith, then
we obtain the following identity:

V[Y] = V[E[Y | X∼i]] + E[V[Y | X∼i]]

⇔
E[V[Y | X∼i]] = V[Y] − V[E[Y | X∼i]] (A.7)

The term E[V[Y | X∼i]] is the expected amount of variance that would remain un-
explained if Xi, and only Xi, were left free to vary over its uncertainty range, all
the other parameters (i.e., the vector X∼i) having been learnt [Homma and Saltelli,
1996; Saltelli et al., 2008]. Similarly to the main effect, the outer expectation is
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used since the true values of the X∼i vector are not known. The total effect in-
dex of the ith parameter is obtained by normalizing E[V[Y | X∼i]] by the total,
unconditional output variance:

STi =
E[V[Y | X∼i]]

V[Y]
= 1−

V[E[Y | X∼i]]

V[Y]
(A.8)

Total effect indices play a pivotal role in distilling information about the overall
parameter importance since they highlight nonadditive features of the model
structure and allow one to quantify parameter interactions, by subtracting the
first order from the total sensitivity indices. Since a robust identification of in-
fluential and non-influential parameters implies quantification not only of first
order effects but also of interaction, the calculation of total effect indices is a
very crucial sensitivity measure for GSA [Saltelli et al., 2008].

The most important properties of first and total Sobol’ sensitivity indices are
summarized as [Saltelli et al., 2000a, 2004, 2008]:

1. 0 6 Si 6 STi 6 1,

2.
∑k
i=1 Si 6 1,

3. if
∑k
i=1 Si = 1 then the model is additive otherwise 1−

∑k
i=1 Si is a mea-

sure of the non-additive model structure,

4. Si = 1 indicates that the model depends only on the parameter Xi,

5. STi = 0 indicates that the model is independent of parameter Xi,

6. STi = Si means absence of interaction between parameter Xi and the other
parameters.

Although the presented equations for estimating the first and total sensitivity
indices are analytical, their practical implementation is feasible under a Monte-
Carlo integration approach. In the present study we followed the computational
strategy originally proposed by Sobol’ [1993] and further improved by Saltelli
[2002]. This computational scheme is parsimonious and is based on the manip-
ulation of two independent sampling matrices A and B of dimensions Nmat× k
each, where Nmat is the number of rows, the sampled parameter sets and k is
the number of columns, i.e., the number of parameters under examination. The
computational cost of the enhanced Sobol’ methodology isNmat× (k+ 2) model
evaluations [Saltelli, 2002] for calculating both first and total sensitivity indices
(2× k indices in total).

The formulae used for calculating Sobol’ indices are based on recent findings
of Saltelli et al. [2010], according to which the best estimators for first and total
Sobol’ sensitivity indices are given by:
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V[E[Y|Xi]] =
1

Nmat

Nmat∑
j=1

f(B)j[f(A
(i)
B )j − f(A)j] (A.9)

E[V[Y | X∼i]] =
1

2Nmat

Nmat∑
j=1

[f(A)j − f(A
(i)
B )j]

2 (A.10)

where f(A)j and f(B)j is the model output when it is forced with the parameter
combination from the jth row of matrix A and B respectively. A(i)

B symbolizes
a manipulated matrix where the ith column comes from the matrix B and all
the other k− 1 columns come from the matrix A (i.e., A may be considered as
sampling matrix and B as re-sampling matrix). Further details about this compu-
tational scheme and a review of alternative numerical estimators are provided
by Saltelli [2002], Saltelli et al. [2010] and references therein.

The use of sophisticated sampling strategies is also widely suggested since
they improve the computational efficiency of numerical integrations [Chan et al.,
2000; Saltelli et al., 2000a, 2004, 2008, 2010]. Many practical studies have shown
that the Sobol’ low discrepancy sequences, known as LPτ sequences [Sobol’,
1967, 1976] provide an enhanced convergence rate of the numerical estimators.
LPτ sequences are deterministic numbers that fulfil predefined properties, of-
fering a very efficient coverage of the entire input parameter space. The next
section provides a better description of LPτ appealing properties and a justifica-
tion of this selection as the most appropriate sampling approach for a uniform
coverage of the parameter space.

a.3 parameter sampling : sobol’ low discrepancy sequences ver-
sus pseudo-random numbers

“It is suggested that, instead of clinging to vague concepts of randomness, it might be
better to aim at working with sequences making no pretence of random origin, but so
devised as to give the best possible guarantee of accuracy in computations." Zaremba
[1968]

Covering a k-dimensional parameter space in a uniform way is not a panacea, es-
pecially for problems with high dimensionality. Parameter sampling is indeed
a very critical step not only for global sensitivity analyses, but generally for
numerical integration, optimization, and calibration problems. Despite a vast
amount of sampling techniques is available in the scientific literature (e.g., ran-
dom sampling, stratified sampling, low discrepancy sequences, etc.), very often
pseudo random numbers are preferred without solid justification. The advan-
tages of Sobol’ Low Discrepancy Sequences (LDS), in comparison to the widely
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used (pseudo) random numbers are summarized below, illustrating their ap-
pealing properties and justifying their use for sampling the parameter values
from a multidimensional (in our case 11−dimensional) parameter space.

Discrepancy is a measure of deviation from uniformity of a sequence of points
in the k-dimensional space. A detailed review of the mathematical concept of
discrepancy is provided in Niederreiter [1978, 1992]; Morokoff and Caflisch [1994];
Sobol’ [1994]. LDS are uniformly distributed deterministic numbers with very
high dispersion. Unlike (pseudo) random numbers, LDS have memory. Thus,
instead of filling the space in a random way, LDS produce successive points
that follow a deterministic sequence, attempting to minimize the empty spaces
and reducing point clustering and overlapping. Sobol’ LDS are used in this
study as many practical applications have shown their superior performance
[Bratley et al., 1992; Paskov and Traub, 1995; Sobol’, 1998; Kucherenko and Sytsko,
2005; Sobol’ and Kucherenko, 2005; Kucherenko et al., 2011]. A detailed description
of the Sobol’ LDS can be found in Bratley and Fox [1988] as well as in the orig-
inal works of Sobol’ [1967, 1976]. Figure A.1 provides a comparison of Sobol’
LDS sequences against pseudo random numbers generated with the classical
Mersenne-Twister random number generator [Matsumoto and Nishimura, 1998]
for two different sample sizes. Note that the sample sizes are of power of two as
the Sobol’ LDS use a base of two to form successively finer uniform partitions
of the unit interval.

Sobol’ LDS, also known as LPτ sequences [Sobol’, 1967, 1976], are per definition
constructed such that they fulfill the following criteria [Sobol’, 1976, 1994; Chan
et al., 2000; Kucherenko and Sytsko, 2005]:

1. Best uniformity of distribution as the sample size goes to infinity.

2. Good distribution for fairly small initial sets.

3. A very fast computational algorithm.

Since the objective of a sensitivity analysis sampling (but also of optimization or
integration problems) is to obtain as much information as possible with a mini-
mum computational cost (i.e., number of sampled points), these very appealing
properties of LPτ sequences make them ideal candidate for sampling strategies.
Figure A.1 illustrates these properties: as the sample size increases, Sobol’ LDS
produce new points in a way that the previous gaps are filled, leading to a very
uniform distribution even for small sample sizes, while (pseudo) random num-
bers, independently from the sample size, are less equidistributed as they do
not have information about the position of the previously sampled points.

The Monte Carlo (MC) integration of multidimensional integrals is the most
common way for comparing the efficiency of different sampling strategies
[Niederreiter, 1992; Sobol’, 1994]. In the MC framework, for a k-dimensional
space (Hk), the integrand f(x) is evaluated at a multiple number, N, of points,
x = {x1, . . . , xN}, and the integration error ε is defined as:
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Figure A.1: Scatter plots and histograms for the case of LPτ sequences and (pseudo)
random numbers scaled in [0,1] interval, for different sample sizes. LPτ
sequences fill out the space in an evenly dispersed manner such that the
new points fill in the previous gaps.

ε = |I[f] − IN[f]| (A.11)

where
I[f] =

∫
Hk
f(x)dx

and

IN[f] '
1

N

N∑
i=1

f(xi)

The expected error of the classical MC integration method, i.e., with (pseudo)
random numbers, is εMC = O(N−1/2). This rather slow convergence rate re-
quires sufficiently large sample sizesN in order to achieve the desirable accuracy.
LDS offer a deterministic version of MC integration, the quasi-MC integration
(QMC) where LDS also know as quasi-random numbers are used for sampling
the required points. The theoretical upper bound of their convergence rate ac-

cording to the Koksma-Hlawka inequality is proved to be εQMC = O(
log k(N)
N )
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[Niederreiter, 1978, 2010; Morokoff and Caflisch, 1994]. The dependence of the er-
ror on the dimensionality of the problem, k, creates the impression that εQMC
would be higher than the εMC especially for problems with high dimension-
ality. However, due to the non-isotropic character of most practical problems
[Papageorgiou, 2000] (i.e., many problems tend to follow the Pareto principle),
the convergence rate of the LDS becomes asymptotically independent of the di-
mensions k. Therefore, as many practical applications have shown, the QMC
integration can provide a rate of convergence ∼ O(N−1) [Press, 2007], which is
much faster than classical MC integration. The faster convergence rate of LDS
in comparison to (pseudo) random numbers and their enhanced capability in
exploring the space (i.e., more uniform coverage) are the two main assets of LPτ
sequences which justify our preference in this type of sampling strategy.

a.4 convergence test of sensitivity indices

Monte-Carlo studies aim to draw conclusions about the probability distribution
of model outputs by recursively performing many model evaluations with dif-
ferent parameter sets. The selection of the number of model evaluations (sample
size) is not a trivial decision and very often arbitrary sample sizes are selected
without further justification. A sufficiently large sample size should be objectively
chosen such that the entire parameter space is covered. This is especially true
in problems with high dimensionality, as it is the case in this study, with an
11-dimensional parameter space. A convergence test was employed to estimate
which sample size leads to robust estimations of the first and total Sobol’ sensi-
tivity indices.

The estimation of first and total Sobol’ sensitivity indices is based on two matri-
ces of equal dimensions, the sample matrix A and the re-sample matrix B (Sec-
tion A.2). The convergence test allows us to define the optimal size, i.e., the num-
ber of rows,Nmat, of these two matrices. Figure A.2, depicts first and total Sobol’
sensitivity indices of vegetation carbon pools for the case of normal precipitation
conditions at middle elevation (1400 m a.s.l.). The sensitivity indices were esti-
mated by using different values of Nmat from 64 to 2048, covering two order of
magnitude sample sizes. Note that Nmat equal to 64 leads to (11+ 2)× 64 = 832
model evaluations, while Nmat equal to 2048 leads to (11+ 2)× 2048 = 26624

model runs. The 95% confidence bounds of the sensitivity indices estimators,
calculated according to the classical bootstrapping technique [Efron, 1979; Efron
and Tibshirani, 1993; Archer et al., 1997], with 1000 bootstrap replicates, are also
shown in Figure A.2. Nmat = 512, i.e., (11 + 2) × 512 = 6656 model evalua-
tions, provides a robust estimation of first and total order Sobol’ sensitivity
indices with relatively narrow uncertainty bounds. The same sample size (6656

model evaluations) led also to robust estimates of Sobol’ sensitivity indices for
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other model outputs e.g., NPP, LAI, and vegetation carbon fluxes (results not
shown).
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Figure A.2: Convergence test for the estimators of the first and the total order effects
with their uncertainty bounds, for vegetation carbon fluxes under normal
precipitation conditions at 1400 m a.s.l. The sample size corresponds to the
number of rows of the sample and re-sample matrices A and B, respectively.
A sample size of 512, highlighted in the plots, is found to be sufficient for the
convergence of the estimators, with relatively narrow uncertainty bounds.
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Figure B.1: Convergence test of the density functions of the exchange variables of D-LPJ
ecohydrological scheme. Four iterations are enough for achieving a conver-
gence over the simulated area of (a) evapotranspiration (soil evaporation,
evaporation from interception, and plant transpiration) as well as of (b) the
effective saturation.

b.2 distributed meteorological variables

The meteorological data used for the present model application are provided
by the Swiss Federal Office of Meteorology and Climatology (MeteoSwiss) and
refer to the period January 2000 through December 2009.

b.2.1 Precipitation

Precipitation fields (Figure 3.3a) used to drive the models (TOPAKPI-ETH and
D-LPJ) are based on a gridded daily precipitation product of 2×2 km2 resolution
(RhiresD; Schwarb [2000]; Wüest et al. [2010]) combined with hourly point-scale
measurements from three meteorological stations located in the catchment area
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(see Figure 3.2). The point-scale measurements are used for disaggregating the
daily values of RhiresD product to hourly temporal resolution. Thiessen poly-
gon interpolation of the hourly gauge precipitation data is used for defining
weights (i.e., hourly partition of the daily precipitation) used for the RhiresD
disaggregation. When precipitation values greater than zero occur only in the
gridded product, a uniform precipitation was assumed for a duration of 7 h.
This occurs only for very low intensity. According to the available data, this
corresponds to a typical duration of precipitation events in Switzerland. The
spatial distribution of precipitation, outlined in the RhiresD gridded product,
reflects a more realistic representation of precipitation patterns in comparison
to classical interpolation methods from station data (e.g. Thiessen polygons or
Inverse Distance Weighting). This is particularly true in complex terrains, as is
the case for the Kleine Emme area (Figure 3.3a).

b.2.2 Temperature

Temperature maps over the catchment were obtained by interpolating spatially
(with Thiessen polygons and a constant air temperature lapse rate of 5.5 ◦C
km−1), observations from the three meteorological stations in the area (Figure
3.3b).

b.2.3 Cloud transmissivity and shortwave radiation

A time series of daily cloud transmissivity, representative for the catchment area,
is calculated based on the observed values of shortwave radiation in the three
meteorological stations (Figure 3.2) and clear sky shortwave radiation simulated
using the AWE-GEN weather generator [Fatichi et al., 2011]. Daily shortwave
radiation inputs for each computational element of D-LPJ were then calculated
based on TOPKAPI-ETH algorithms (see Section 3.2.1.2), accounting explicitly
for local topographic effects (Figure 3.3c).

b.3 vegetation carbon fluxes : lpj simulations vs eddy covari-
ance estimates

Five different Swiss FLUXNET sites, covering a wide altitudinal range as well as
the major land use types in Switzerland: evergreen forest (Davos; 1639 m a.s.l.),
deciduous forest (Laengern; 682 m a.s.l.), and grassland (Chamau, 393 m a.s.l.;
Fruebuel, 982 m a.s.l.; Oensingen, 451 m a.s.l.), are incorporated in the analysis.
More details on the grassland sites can be found in Ammann et al. [2007]; Gilgen
and Buchmann [2009]; Lazzarotto et al. [2009]; Zeeman et al. [2010]. Figure B.2 de-
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picts the temporal dynamics of Gross Primary Production (GPP) as estimated
by the Eddy-Covariance measurements, as well as by the LPJ simulations with
original and adjusted parameter values. It is clear from Figure B.2 that the orig-
inal species-based parameterization of LPJ (based on Hickler et al. [2012]) is not
reproducing very well the observed vegetation fluxes in Switzerland. This pa-
rameterization was developed for regional or continental scale applications, and
thus discrepancies occur when point-scale comparisons are attempted. To over-
come this issue, key plant physiological properties related to photosynthesis,
carbon allocation, and phenological cycle were adjusted manually within their
uncertainty ranges in order to achieve a better agreement with the measured
carbon fluxes.

More specifically, for Davos (evergreen forest), the disagreement among the ob-
served values of GPP and the simulated GPP with the original parameterization
of LPJ is striking (Figure B.2). The intrinsic quantum efficiency of the photosyn-
thetic machinery and leaf-to-root ratio were therefore adjusted (reduced) in or-
der to mimic this lower productive forest stand [Etzold et al., 2011]. The same ap-
proach was followed also for re-parameterizing the deciduous forest in Laegeren
and obtaining GPP values closer to the observed magnitude. Intrinsic quantum
efficiency in LPJ encapsulates information about the canopy-average maximum
Rubisco capacity, Vmax (see detailed discussion in Pappas et al. [2013]). Vmax is
known to be highly variable among species and sites, therefore the preformed
adjustments are well justified. The empirical parameter defining the partition
between above- and below-ground biomass is also very uncertain, and the per-
formed adjustments are within the range of typical values [Pappas et al., 2013].
Grassland sites in Switzerland are very productive and often highly managed
[e.g., Lazzarotto et al., 2009; Zeeman et al., 2010]. Therefore, intrinsic quantum ef-
ficiency was increased, and some adjustments of the parameters regulating the
carbon allocation (above- and below-ground) and the phenological cycle were
performed. More specifically the leaf-to-root ratio, the leaf longevity, and the
growing degree sum on a 5 degree base required for full leaf cover, were de-
creased in order to achieve not only a good agreement of carbon fluxes but also
lower values of Leaf Area Index (LAI). With the new, adjusted parameterization,
tailored to the Swiss area, the carbon fluxes of the examined sites are better
captured (Figure B.2, B.3).

b.4 modis pre-processing

Gross Primary Production (GPP) is based on the MODIS land product MOD17A2

(Version 005) and Leaf Area Index (LAI) on the MOD15A2 (Version 005). The
resolution of both products is 1 × 1 km2 with a eight-days regular time-step.
Apart from the usual quality assurance layer of MODIS products, an additional
analysis was conducted following the methodology presented by Hwang et al.
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Figure B.2: Monthly gross Primary Productivity (GPP) in five Swiss FLUXNET sites es-
timated by Eddy-Covariance measurements (black lines) as well as with LPJ
with the original parameterization (green lines), and LPJ with the adjusted
plant physiological parameters (red lines).

[2011]. A detailed description of MODIS pre-processing for the Alpine region is
provided in Bogler [2013].
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Figure B.3: (a) Seasonality and (b) scatter plots of Gross Primary Productivity (GPP)
in five Swiss FLUXNET sites estimated by Eddy-Covariance measurements
(black lines) as well as with LPJ with the adjusted plant physiological param-
eters (the mean response over the simulated period is depicted with the red
lines, while the light red areas illustrate the variation among the different
years of the simulated period).

In summary, for GPP data pre-processing, values from all the years were com-
bined to compute quantiles, assuming that change of GPP between years is
smaller than within a year [Hwang et al., 2011]. In order to reduce the noise
of the product, only values included in 1.5-times the interquartile range from
lower and upper quartiles are selected. A linear interpolation is then performed
for the selected values. As for the LAI, instead of discarding all values below
two thirds of the 25% quantile, as it is done for GPP, all values below the 25%
quantile are discarded. In order to investigate the temporal dynamics of LAI
without misleading effects from the intrinsic noise of the product, a smoothing
approach was applied. Based on the methodology described by Jönsson and Ek-
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lundh [2004, 2002], the Savitzky-Golay filter was used for smoothing the time se-
ries. This filter replaces each value by one derived from the surrounding points
inside a specified moving window. The new value is computed by fitting a poly-
nomial function (third degree in the present application) using least squares
estimation, to the points within the window (here eleven points) Bogler [2013];
Jönsson and Eklundh [2004, 2002]. While Savitzky-Golay filter is appropriate for
highlighting fast changes in a time series, it is sensitive to noisy data [Hwang
et al., 2011]. This is the reason why a stricter selection of LAI raw data, compar-
ing to GPP, was applied. A second smoothing is additionally conducted, with
the loess (local regression) method. A polynomial function is fitted to the re-
maining data points by local regression, based on the least square method, but
here the points are weighted. A linear interpolation between the data points and
the smoothing results was finally applied.

b.5 swiss national forest inventory : data details

Various sources of data, such as terrestrial forest surveys, aerial photos, GIS
information, are compiled in the NFI product. In situ records of tree height
and diameter at breast height, are incorporated into allometric relationships to
provide estimates of vegetation biomass (e.g., above-ground biomass, as well as
carbon stocks in specific tissues) and vegetation growth increments. The first
NFI used a 1 km square grid over Switzerland, in total about 41000 clusters. In
the following periods NFI2 and NFI3 only half of the clusters were re-sampled
on a 20.5 km square grid diagonal to the grid used in period NFI1. In a first step
raster-based aerial image interpretation was used to distinguish between forest
and non-forest clusters. In a second step the forest clusters were sampled in the
field. Two concentric circles were used for sample tree selection: a horizontal
circle of 200 m2 for trees with 12 cm 6 diameter at breast height (1.3 m, dbh)
< 36 cm, and a horizontal circle of 500 m2 for trees with dbh > 36 cm. For
each tree, species, survival status, stem damages etc. were recorded. Dbh was
measured for each sample tree, but tree height, height to the crown base and
stem diameter at a height of 7 m was measured only for a sub-sample. This sub-
sample was then used to develop species- and site-specific allometric individual-
tree stem volume functions [Kaufmann, 2001]. Other species specific allometric
functions were used to estimate the volume of twigs and branches [Kaufmann,
2001], and bark volume [Altherr et al., 1978]. Tree above ground woody biomass
was derived by multiplying the tree volume with species specific wood densities
given by Assmann [1961]. Foliage biomass and woody coarse root biomass was
estimated using the function presented by Perruchoud et al. [1999]. For more
details on the Swiss NFI and its methods see Brassel and Lischke [2001] and
www.lfi.ch. In the present study, in order to convert tree biomass to carbon
amounts, a fixed proportion of 50% C per kg of dry biomass was assumed.
Long-term changes in vegetation carbon stocks over the Kleine Emme area are
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examined. Mean changes in vegetation carbon stocks simulated by LPJ, LPJ-
GUESS, and D-LPJ, for the period 2000 to 2009, are compared with the two
estimates of average changes in carbon-stock derived from the consecutive forest
inventories: NFI1; from 1983 to 1985, NFI2; from 1993 to 1995, NFI3; from 2004

to 2006.

b.6 confirming the hydrological consistency
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Figure B.4: (a) Seasonality and (b) scatter plots of river discharge, for the period 2000

through 2009, in three locations over the Kleine Emme catchment.



116 appendix : heterogeneities and ecosystem modeling

b.7 temporal dynamics of gpp and lai over the kleine emme
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Figure B.5: Seasonality plots of (a, b) Gross Primary Productivity (GPP) and (c, d) Leaf
Area Index (LAI) over the Kleine Emme catchment as estimated by D-LPJ,
LPJ, and LPJ-GUESS over the 2000-2009 period.

b.8 disentangling the role of land cover initialization

In order to quantify the importance of correct land cover initialization, LPJ sim-
ulations are carried out with mean climatic conditions over the area, but with
prescribed land cover instead of the potential natural vegetation hypothesis. The
results of these simulations are compared with the D-LPJ outputs in Figure B.6
and B.7. For the case of GPP, when land cover information is provided to LPJ
simulations the bias (defined as the difference with the D-LPJ area-averaged
values) is about 4%, much lower than the bias of the original simulations with
LPJ (≈ 23%) and LPJ-GUESS (≈ 42%) based on the potential natural vegetation
hypothesis. However, biases in area-averaged LAI values are not significantly
affected with the modified version of LPJ, i.e., accounting for the current land
cover in the simulated domain. In comparison to the D-LPJ simulations of LAI,
the modified version of LPJ, accounting for the current land cover, underesti-
mates the area-averaged LAI over the catchment by ≈ 42%, when compared to
the 35% and 45% bias of the original LPJ and LPJ-GUESS simulations.
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Figure B.6: (a) Spatial patterns of mean Gross Primary Production (GPP) for the period
2000 to 2009, over the Kleine Emme catchment, as estimated by D-LPJ and
LPJ with mean climatic conditions but with prescribed land cover (based
on the current land use map, as in D-LPJ simulations). (b) Distribution of
GPP over the catchment as estimated by the spatially explicit D-LPJ and the
LPJ simulations with mean climate forcing but prescribed land cover. Solid
lines depict the estimates based on LPJ and LPJ-GUESS, while dashed lines
highlight the mean of the distributions.
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Figure B.7: (a) Spatial patterns of mean Leaf Area Index (LAI) for the period 2000 to
2009, over the Kleine Emme catchment, as estimated by D-LPJ and LPJ with
mean climatic conditions but with prescribed land cover (based on the cur-
rent land use map, as in D-LPJ simulations). (b) Distribution of LAI over the
catchment as estimated by the spatially explicit D-LPJ and the LPJ simula-
tions with mean climate forcing but prescribed land cover. Solid lines depict
the estimates based on LPJ and LPJ-GUESS, while dashed lines highlight
the mean of the distributions.
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b.9 downscaling dynamic vegetation models using fine resolu-
tion grid : fine resolution lpj and d-lpj results

In order to further demonstrate the role of local scale information (meteorolog-
ical forcing, local land use, topography, as well as mechanistic representation
of lateral and vertical water fluxes), in this section we illustrate simulation re-
sults with LPJ, but now driven with fine scale information (similarly to D-LPJ;
i.e., spatially explicit meteorological forcing and current land use instead of nat-
ural potential vegetation) and with D-LPJ. In D-LPJ apart from the local scale
detailed meteorological forcing and current land use attributes, lateral and verti-
cal water fluxes are additionally explicitly simulated, using the TOPKAPI-ETH
hydrological model. The results presented in this section are in essence an ex-
plicit illustration of Figure B.1, since iteration-0 in the coupling scheme of LPJ
with TOPKAPI-ETH corresponds to the results of the original LPJ forced with
detailed meteorological inputs and using the current land use, while iteration-
3 corresponds to the D-LPJ simulations (i.e., coupled LPJ and TOPKAPI-ETH
simulation).

The simple hydrological representation of LPJ, leads to unrealistic representa-
tion of soil moisture patterns over the Kleine Emme catchment, with almost
the entire catchment domain close to saturation. D-LPJ on the other hand, us-
ing a more mechanistic hydrological representation captures reasonably well
the spatial soil moisture dynamics caused by the complex topography and the
lateral and vertical water fluxes (Figure B.8). LPJ, once forced with fine reso-
lution meteorological information, is capturing fairly well the spatial patterns
of evapotranspiration, mainly due to the strong control of radiation on plant
activity. The detailed hydrological representation embedded in D-LPJ enhances
the spatial patterns of simulated ETA, reflecting additional local scale attributes
mainly due to lateral water fluxes (Figure B.9). Both LPJ with detailed meteo-
rological forcing and local land use information and D-LPJ yield similar spatial
patterns of annual NPP and LAI (Figure B.10 and B.11). Vegetation in Kleine
Emme region is mostly energy, rather that water limited, therefore the advan-
tages of the enhanced hydrological representation through D-LPJ simulations
are not reflected in the long-term simulated NPP. In addition, the lack of sensi-
tivity to water availability and dynamics can be attributed to parameterization
issues embedded in LPJ and possibly other structurally similar models, as well
as lack of direct environmental controls on the simulated plant growth, as re-
cently highlighted by Pappas et al. [2013].
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D-LPJLPJ(a) (b)

Figure B.8: Spatial patterns of mean soil water content for the period 2000 to 2009, over
the Kleine Emme catchment, as estimated by (a) LPJ using exactly the same
inputs as D-LPJ (i.e., fine resolution meteorological forcing and local land
use information) and (b) D-LPJ (i.e., fine resolution meteorological forcing,
local land use map, and in addition, detailed hydrological representation
of vertical and lateral fluxes using TOPKAPI-ETH distributed hydrological
model).

LPJ D-LPJ(a) (b)

Figure B.9: Same as Figure B.8, but for evapotranspiration (ETA).
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LPJ(a) (b) D-LPJ

Figure B.10: Same as Figure B.8, but for annual net primary production (NPP).

LPJ(a) (b) D-LPJ

Figure B.11: Same as Figure B.8, but for Leaf Area Index (LAI).





C
A P P E N D I X C : M O D E L I N G T E R R E S T R I A L C A R B O N A N D
WAT E R D Y N A M I C S A C R O S S C L I M AT I C G R A D I E N T S : D O E S
P L A N T D I V E R S I T Y M AT T E R ?

c.1 climatic forcings

Environmental conditions are important in shaping vegetation performance and
functioning. While deriving spatially averaged long-term climatic field is rather
common in literature, continuous time series of meteorological variables across
elevation bands are rarely available at the fine, sub-daily time scales. Few mete-
orological networks have the density capable of capturing climate conditions to
characterize altitudinal differences of few hundred meters. Simple interpolation
of meteorological variables is problematic and generates “smoothed” fields, es-
pecially for highly dynamic variables such as precipitation, solar radiation, and
wind speed. In the present study, in order to analyzed the effects of climate
variability in terrestrial ecosystem functioning, long-term cross-correlated mete-
orological variables, at the hourly time scale, are generated using an advanced
weather generator, calibrated with a large amount of meteorological data across
altitudinal and precipitation gradients.

c.1.1 Generating the climatic gradients: methodology

A stochastic methodology for simulating long-term hourly time series of meteo-
rological variables across a continuous range of elevations is implemented (Fig-
ure C.1). More specifically, ground observations from the MeteoSwiss network
and an hourly weather generator (Advanced WEather GENerator, AWE-GEN,
Fatichi et al. [2011]), are combined to construct synthetic climatic gradients of the
meteorological variables used for driving T&C simulations (e.g., precipitation,
air temperature, cloud cover, relative humidity, wind speed, solar radiation, and
atmospheric pressure).

AWE-GEN is an hourly weather generator capable of reproducing characteris-
tics of hydrometeorological variables across a wide range of temporal scales,
from interannual to hourly [Fatichi et al., 2011]. It generates realistic climatic gra-
dients (not only consistent with the observed meteorological variables but also
maintaining the cross-correlations among them). The weather generator uses
both physically-based and stochastic approaches and is a significant evolution

123
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of the model presented by Ivanov et al. [2007]. It includes a formulation of the pre-
cipitation module based on the Poisson-Cluster process, and additional modules
for generating cloud cover and air temperature time series. It further simulates
vapour pressure, wind speed, atmospheric pressure, and shortwave radiation
partitioned into various wavebands (e.g., Photosynthetically Active Radiation,
PAR) and in the diffuse and direct components. AWE-GEN theoretical frame-
work and parameter estimation can be found in Fatichi et al. [2011]. A technical
reference of AWE-GEN is available online (http://www-personal.umich.edu/
ivanov/HYDROWIT/Models.html).

500 m a.s.l.

2500 m a.s.l.

(a) (b)

Figure C.1: (a) Map of mean annual precipitation [mm yr−1] in the South-West of
Switzerland. Red and blue lines depicted the selected meteorological sta-
tions for generating the dry and wet gradients respectively. (b) Mean annual
precipitation vs elevation in Switzerland based on data from the MeteoSwiss
network.

The developed methodology uses observed data from stations located along
an altitudinal gradient (see Figure C.1 and Table C.1) for parameterizing the
weather generator for each single station. The estimated parameters are suc-
cessively interpolated at different elevations using both linear and non-linear
functions. The re-parameterized weather generator is able to produce a consis-
tent gradient of climate across the elevation range, preserving the co-variation
among meteorological variables. The methodological steps for generating the
climatic gradients can be summarized as follows:

1. Sort the available stations with observations of hourly meteorological vari-
ables (precipitation, air temperature, cloud cover, relative humidity, wind
speed, solar radiation, atmospheric pressure) across an elevation gradient.

2. Estimate the parameters needed for the hourly weather generator, AWE-
GEN.

3. Interpolate the estimated parameters across elevation bands (ranging from
500 to 2500 m a.s.l. in the present study).
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4. Generate long-term (30 yr in our study) time series of climatic variables
for each elevation band and precipitation gradient (wet, dry).

Two synthetic climate gradients, which correspond to two significantly different
precipitation regimes, are generated (Table C.1). The first corresponds to a dry
gradient (sheltered internal valley in Valais, Figure C.1a) and the second to a
wet gradient (exposed mountain side, Bernese Oberland, Figure C.1a). Thirty
year long time series of cross-correlated precipitation, air temperature, relative
humidity, wind speed, solar radiation, and atmospheric pressure for elevation
bands from 500 up to 3500 m a.s.l. are generated to represent the climatic dif-
ferences. For the T&C simulations of this study, only elevations ranging from
500 to 2500 m a.s.l. are used, since vegetation cover is usually rare above 2500

m a.s.l.

Table C.1: Selected stations (with mean values of different meteorological variables)
used for generating the dry and wet climatic gradients across the different
elevation bands.

Station

Number of 

years 

available

Elevation 

[m a.s.l.]

Precipitation 

[mm yr
-1

]

Air 

temperature 

[
o
C]

Wind speed 

[m s
-1

]

Relative 

humidity 

[-]

Solar 

radiation 

[W m
-2

]

Atmospheric 

pressure [hPa]

Sion 30 482 597 10.1 2.16 0,70 189 960

Visp 30 639 589 9.43 2.99 0.68 182 941

Zermatt 29 1638 626 4.33 1.84 0.64 183 834

Evolene 24 1825 719 4.36 0.71 0.64 191 815

Col du Gr. St. 

Bernard 29 2472 2359 -0.48 5.53 0.74 184 751

Wynau 30 422 1195 9.08 1.78 0.79 154 967

Interlaken 30 577 1158 8.83 1.63 0.77 156 949

Adelboden 30 1320 1319 6.05 1.42 0.73 159 867

Grimsel 22 1980 1833 1.2 4.83 0.72 183 802

Jungfraujoch 30 3580  - -7.9 7.34 0.7 205  -

Dry gradient

Wet gradient

c.1.2 Climatic gradients: validation

The simulated hourly time series reproduce well the statistics of observed mete-
orological variables. First and high-order statistics as well as seasonality, show
a consistent transition across all of the elevations and are in a close agreement
with the station-based records (Figure C.2, C.3, and C.4 respectively).



126 appendix : plant diversity and ecosystem functioning

0 2 4 6 8
0

1000

2000

3000

4000

[m s
−1

]

Mean Annual Wind speed

E
le

v
a

ti
o

n
 [

m
]

0.65 0.7 0.75 0.8
0

1000

2000

3000

4000

[−]

Mean Annual Relative Humidity

E
le

v
a

ti
o

n
 [

m
]

0.55 0.6 0.65 0.7 0.75
0

1000

2000

3000

4000

[−]

Mean Annual Cloudiness

E
le

v
a

ti
o

n
 [

m
]

500 1000 1500 2000 2500
0

1000

2000

3000

4000

[mm]

Mean Annual Rainfall

E
le

v
a

ti
o

n
 [

m
]

−10 0 10 20
0

1000

2000

3000

4000

[°C]

Mean Annual Air Temperature

E
le

v
a

ti
o

n
 [

m
]

200 400 600 800 1000
0

1000

2000

3000

4000

[Pa]

Mean Annual Vapour Pressure

E
le

v
a

ti
o

n
 [

m
]

140 160 180 200 220
0

1000

2000

3000

4000

[W m
−2

]

Mean Annual Shortwave Radiation

E
le

v
a

ti
o

n
 [

m
]

Figure C.2: Mean climate gradients for the examined meteorological variables, as sim-
ulated with the weather generator (blue and red points correspond to wet
and dry precipitation regimes respectively) as well as the observed mean
climatic variables based on the station data (black diamonds).
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Figure C.3: Hourly standard deviations of the climate gradients for the examined me-
teorological variables, as simulated with the weather generator (blue and
red points correspond to wet and dry precipitation regimes respectively) as
well as of the observed climatic variables based on the station data (black
diamonds).

c.1.3 Climatic gradients: long-term dynamics

The long term dynamics (i.e., average values over the 30 yr of the simulated
time series) of the major environmental drivers of T&C simulations across the
altitudinal and precipitation gradients are illustrated in Figure C.5.
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Figure C.4: Seasonal precipitation as simulated with the weather generator (blue and
red points correspond to wet and dry precipitation regimes respectively) as
well as the observed seasonality based on the station data (black diamonds).
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Figure C.5: Variation of the mean annual values (averaged over 30 yr) of major environ-
mental variables across the examined precipitation (wet, dry), and elevation
gradients. Boxes extend from the 25th to the 75th percentile, while whiskers
extend to 1.5 times the interquartile range of the lower and upper quartiles
respectively.

c.2 methodological details on the generation of proxy plant

species

Proxy plant species are generated combining: (i) three categories of plant-life
forms (reflecting structural and phenological differences among plant species;
Section C.2.1); (ii) three discrete plant drought tolerances (Section C.2.2); and
(iii) four major leaf traits, constructed using a continuous spectrum of values
across the observed leaf economics spectrum (Section C.2.3).
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c.2.1 Separating plant-life forms

The immense diversity of plant-life strategies and their structural (e.g., plant
tissues) and phenological differences are tackled in the T&C framework using
three discrete plant-life forms (denoted as “evergreen”, E, “deciduous”, D, and
“grass”, G). Vegetation species that share the same life form (tree or grass) and
structural attributes (phenology and carbon pools) are considered to belong
to the same T&C plant-life form [also called “broad vegetation categories” in
Fatichi et al., 2012a]. This differentiation is necessary because the three vegetation
categories have substantially different phenology and carbon pool dynamics. In
T&C, the following attributes vary among the simulated plant-life forms:

• the number of carbon pools (in the grass life form, there is no carbon pool
corresponding to sapwood and heartwood),

• the phenology of allocation to and translocation from the carbohydrate
reserves,

• the phenology of allocation strategies, i.e., in evergreen plant-life form, car-
bon is allocated to all of their compartments, including reserves through-
out the entire year,

• the leaf turnover rates,

• the phenological states, i.e., deciduous and grass plant-life forms experi-
ence all phenological states (dormant, maximum growth, normal growth,
and senescence), while for evergreen plant-life forms senescence and dor-
mant states are merged,

• the transition across phenological states varies also for the three plant-life
forms (i.e., changes from normal growth to senescence and from senes-
cence to dormant statuses).

• the allometric constraints, i.e., leaf-to-root ratio varies among different
plant-life forms (higher values for woody in comparison to herbaceous
species),

• the translocation rate (higher values for plants that attain faster grow rates
after leaf onset e.g., grasses, temperate deciduous species),

More details regarding the differentiation and parameterization of the three
plant-life forms within the frame of T&C can be found in [Fatichi et al., 2012a].
Table C.2 summarizes the T&C parameters that vary across the simulated plant-
life forms in this study.
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Table C.2: T&C parameters used for generating proxy plant species for the three ex-
amined plant life forms (E: evergreen, D: deciduous, G: grass). More infor-
mation, and justification of the selected values can be found in Fatichi et al.
[2012a, 2014].

Parameter ID Value Description Units

droot
-1

E: 1460         

D: 900          

G: 550

Turnover rate of fine roots. [d]

dsapw
-1

E: 730         

D: 550       

G: -

Living sapwood to heartwood convertion rate. [d]

Kn

E: 0.35         

D: 0.35         

G: 0.20

Control parameter for the exponential decay of 

the canopy nitrogen profile.
[-]

Rltr

E: 0.80        

D: 0.80          

G: 0.35

Maximum leaf-to-root or shoot-to-root ratio 

(allometric constraint).
[-]

rr

E: 0.050        

D: 0.030          

G: 0.045

Respiration rate coefficient on a 10
o
C base. [gC gN

-1
 d

-1
]

Tday

E: 13.0         

D: 12.8           

G: 10.7

Mean duration of day for leaf onset. [h]

TrC

E: 1.0                

D: 3.5          

G: 2.0

Carbohydrate translocation rate. [gC m
-2

 PFT d
-1

]

Ts,LO

E: 4.5              

D: 4.0           

G: 1.0

Prescribed temperature threshold for the 

beginning vegetation growth.
[

o
C]

gcI 3.7 Interception exponential decay parameter. [mm
-1

]

KcI 0.06 Interception drainage rate coefficient. [mm h
-1

]

Sp_SN_In 5.9 Maximum specific snow intercepted by vegetation. [mm SWE LAI
-1

]

Sp_LAI_In
E: 0.1         

D, G: 0.2
Maximum specific water intercepted by vegetation. [mm LAI

-1
]

d_leaf

E: 0.25           

D: 4.00           

G: 0.80

Characteristic leaf dimension. [cm]

FI 0.081 Intrinsic quantum efficiency.
2

photons
-1

]

go 0.01 Cuticular conductance. [mol CO2 s
-1

 m
-2

]

gR 0.25 Growth respiration coefficient. [-]

Mf 1/50 Fruit maturation turnover rate. [d
-1

]
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Parameter ID Value Description Units

DSE
E, D: 0.649                

G: 0.656
Entropy factor. [kJ mol

-1
]

Ha
E, D: 72            

G: 55
Activation energy. [kJ mol

-1
 K

-1
]

rjv

E: 2.0         

D: 2.5     

G:2.6

Scaling factor between Jmax (canopy maximum 

electron transport) and Vmax (maximum Rubisco 

capacity).

2
-1

]

Ns Nf/0.145
Sapwood carbon-nitrogen content as a fuction of 

foliage carbon-nitrogen mass ratio (Nf).
[gC gN

-1
]

Nr Nf/0.860
Fine root  carbon nitrogen content as a fuction of 

foliage carbon-nitrogen mass ratio (Nf).
[gC gN

-1
]

dd_max
E: 1/360             

D, G: 1/365
Maximum leaf turnover rate induced by drought. [d

-1
]

dc_C

E: 78/365               

D: 32/365               

G: 6/365

Linear coefficient for foliage loss due to cold 

temperature.
[d

-1 o
C

-1
]

Tcold

E: -20                  

D: 4                

G: 0

Temperature threshold for foliage loss. [ C]

Bfac_lo
E, D: 0.95                    

G: 0.99

Moisture stress threshold for the beginning of 

vegetation growth.
[-]

dmg

E: 30                 

D: 35                 

G: 20

Number of days of maximum growth. [d]

LAI_min

E: 0.001                    

D: 0.010                    

G: 0.100

Minimum leaf area index at which canopy is 

considered completely defoliated.
[m

2
 leaf m

-2 
ground]

mjDay
E: 180                 

D, G: 250
Maximum Julian day for leaf onset. [-]

eps_ac

E: 0.1                   

D: 1.0                

G:0.2

Parameter conrolling the allocation to 

carbohydrate reserve.
[-]

LDay_cr

E: 9.65               

D: 11.50             

G: 10.70

Day light threshold for senescence. [h]

Klf

E: 1/40                    

D: 1/28                   

G: 1/50

Dead leaves fall turnover rate. [d
-1

]

fab
E, D: 0.74                  

G: 0

Fraction above-ground sapwood and heartwood 

reserve.
[-]

fbe
E, D: 0.26                

G:1.00

Fraction below-ground sapwood and heartwood 

carbohydrate reserve.
[-]

Table C.2. (continued)

c.2.2 Parameterizing plant drought tolerance

In order to mimic different plant strategies for responding to drought-induced
stress, four T&C parameters, related to plant water abstraction, were adjusted,
corresponding to “low” (L), “medium” (M), and “high” (H) drought tolerances
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(see Table C.3). More specifically, plants with low drought tolerance can uptake
water only at high values of soil water potential (at the beginning as well as at
full stomatal closure), in comparison to plants with medium and high drought
tolerances that are capable of uptaking water at lower water potentials, allow-
ing them to perform better under water-limited conditions. In addition, deeper
plant rooting depth moving from low to higher drought tolerances, therefore
allowing species with high drought tolerance to uptake water from a deeper
soil profile. Finally, we assigned different sensitivities of stomatal conductances
to species with high drought tolerance (in T&C stomatal dynamics are simu-
lated through the coupled photosynthesis-stomatal resistance scheme proposed
by Leuning [1990]; Collatz et al. [1991, 1992]; Leuning [1995]). Based on Eq. (5) in
Fatichi et al. [2012a], species with high (low) drought tolerance, are character-
ized by low (high) values of the empirical parameter in the Leuning’s stomatal
conductance equation (parameter α in Table C.3) leading therefore to larger
(lower) water use efficiency. Note that it is rare in nature to have all the consid-
ered traits (soil water potentials impairing functional activities, rooting depth,
and stomatal dynamics) playing in the same direction of “drought tolerance” vs
“drought intolerance”. The selected strategies are therefore rather extreme, but
still plausible drought strategies.

Table C.3: Description of the parameters used for mimicking different plant strategies
for drought tolerance (L: low, M: medium, H: high).

Parameter ID Description Units References

Empirical parameter in 

Leuning's equation for stomatal 

conductance.

[-]
Fatichi et al. 2012a;          

Leuning, 1995, 1990

PSIss

Soil water potential at which 

stomatal closure begins.
[MPa]

Manzoni et al. 2013                          

Scoffoni et al. 2012                      

Blackman et al. 2010                  

Meinzer et al. 2009              

Maherali et al. 2004 

PSIwp

Soil water potential at full 

stomatal closure (wilting point).
[MPa]

Manzoni et al. 2013                          

Scoffoni et al. 2012                      

Blackman et al. 2010                  

Meinzer et al. 2009              

Maherali et al. 2004 

g
ra
ss

L:0.10 

M:0.25 

H:0.50

tr
e
e
s

L:0.5 

M:1.0 

H:1.5

Value

L:10            

M:8          

H:6

L:-0.5         

M:-1.2         

H:-2.0

L:-1.0         

M:-3.0        

H:-5.0

ZR95
Rooting depth that contains 

95% of the root biomass.
[m]

Canadell et al., 1996;             

Jackson et al 1996, 1997;  

Schenk & Jackson 2002a,b   

Manzoni et al. 2013
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c.2.3 Sampling proxy species with coordinated leaf traits

There is empirical evidence that several plant traits are cross-correlated [e.g.,
Reich et al., 1997; Wright et al., 2004; Kattge et al., 2011]. In the present study,
the freely available GLOPNET dataset [http://bio.mq.edu.au/∼ iwright/glop-
ian.htm; Wright et al., 2004], is used for generating proxy plant species with
coordinated leaf-level plant traits. More specifically, using data from the leaf
economics spectrum [Wright et al., 2004], the following leaf properties are inves-
tigated: (i) critical age for leaf shed, Acr, (ii) maximum Rubisco capacity (ob-
tained through the conversion from the photosynthetic capacity rates, Amass,
see detailed discussion in Section C.2.4), (iii) carbon-nitrogen mass ratio for the
foliage Nf, and (iv) specific leaf area, SLA (equal to 1/LMA, where LMA is the
Leaf Mass per Area). Acr, Amass, Nf, and SLA are selected since they are well-
documented, quantitative plant traits, with high species coverage worldwide
[Kattge et al., 2011].

Using the GLOPNET records, three major plant categories are identified, corre-
sponding to two growth forms (i.e., tree and grass) and two phenological states
(i.e., evergreen and deciduous). Regarding the photosynthesis pathway, only C3

type of plants were selected. Having distinguished the three subsets, empirical
cross-correlations among the leaf-traits were conserved by sampling values from
a multivariate normal distribution with the same statistical properties as the in-
ferred from GLOPNET. In order to avoid outliers that correspond to species that
cannot occur in the European Alpine environment, values below the 5 % and
above the 95 % quantile of the traits distribution are discarded. Table C.4 pro-
vides a detail description of the aforementioned variables as well as their ranges
of variability.

c.2.3.1 Sampling leaf traits from a truncated multivariate normal distribution

We generate 100 proxy species (hypothetical species with realistic properties) for
each plant-life form. We use a truncated multivariate normal distribution, fitted
using the empirical statistical properties (mean, variance, and cross-correlations)
from the GLOPNET dataset. Since the goal of the study is to investigate the role
of inter- and intra-specific trait variability in the simulated carbon and water
fluxes and states, 100 proxy species are considered a number large enough for
covering the multi-dimensional space of major plant traits within T&C. The
package tmvtnorm in R environment [RCoreTeam, 2012] was used.

c.2.3.2 Evaluating the assumption of normally distributed plant traits

The assumption of normality in the log-transformed leaf-traits facilitates the
sampling procedure. The well-established multivariate normal distribution can
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Table C.4: A description of leaf-traits used for generating proxy plant species with co-
ordinated properties. The empirical covariances from the GLOPNET dataset
are conserved among the leaf traits. The ranges from the multivariate nor-
mal sampling are reported as minimum (Min.) and maximum (Max.) values,
while in parentheses are the ranges from the original GLOPNET dataset. E,
D, G, correspond to the three investigated plant life forms, i.e., evergreen,
deciduous, and grass, respectively.

Parameter ID Min. Max. Description Units

Acr

E: 228 (144)          

D: 107 (87)            

G: 51 (30)

E: 1848 (8652)    

D: 280 (329)        

G: 189 (1371)

Critical age for leaf shed. [d]

Amass

E: 1.63 (1.41)            

D: 3.48 (3.80)             

G: 4.69 (4.27)

E: 25.99 (28.18)            

D: 25.26 (23.44)          

G: 35.14 (35.48)

Photosynthetic assimilation 

rates measured under high 

light, ample soil moisture and 

ambient CO2.

2 s
-1

 m
-2

]

Vcmax

E: 11                     

D: 23                    

G: 32

E: 177                    

D: 172                    

G: 241

Leaf-level values of maximum 

Rubisco capacity at 25 
o
C.

2 s
-1

 m
-2

]

Nf

E: 19.40 (11.70)    

D: 16.00 (10.60) 

G: 15.60 (11.60)

E: 62.90 (122.20)            

D: 34 (58.20)         

G: 45.90 (72.40)

Carbon-nitrogen mass ratio for 

foliage.
[gC gN

-1
]

SLA

E: 0.007 (0.001) 

D: 0.015 (0.009) 

G: 0.011 (0.003)

E: 0.034 (0.078) 

D: 0.046 (0.078) 

G: 0.058 (0.066)

Specific leaf area. [m
2
 LAI gC

-1
]

be therefore used for sampling values (proxy species) with prescribed statisti-
cal properties (i.e., corresponding to the observed values and their empirical
covariances). In order to assess the robustness of the normality assumption the
quantile-quantile (Q-Q) plots of the analyzed plant traits were considered (Fig-
ure C.6) and we conducted three statistical tests (Shapiro-Wilks, Kolmogorov-
Smirnov, Anderson-Darling) (Table C.5).

From the Q-Q plots (Figure C.6) we can conclude that the assumption of normal-
ity in the examined traits can be considered a fair approximation. For evergreen
and deciduous plant-life forms most of the points fall on a line with only few
deviations (i.e., there are a few outliers in the datasets). There are important
deviations from normality for the grass plant-life form regarding the four exam-
ined leaf traits. Several points are lying out of the theoretical vs sample quantile
line. This left-end of pattern below the line and the right-end of pattern above
the line underlies the existence of long tails at both ends of data distribution.
Leaf mass per area (LMA) has also a deviation from normality: the data distri-
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bution is skewed to the right since the Q-Q plot shows a curved pattern with the
slope increasing from left to right. A possible explanation for these deviations of
normality is the small sample size (the available data from GLOPNET that cor-
respond to C3 grass are 19, 47, 45, 21 for Acr, LMA, Nf, and Amass respectively)
rather than a strong evidence for a distribution of the population different from
the normal.

E D G

0

1

2

3

−3 −2 −1 0 1 2 3 −3 −2 −1 0 1 2 3 −3 −2 −1 0 1 2 3

theoretical

sa
m
p
le

Leaf trait

Acr

LMA

Nf

Amass

Figure C.6: Quantile-quantile plots for the three analyzed plant-life forms (evergreen, E,
deciduous, D, and grass, G), for the examined leaf traits (plotted in the loga-
rithmic scale; Acr [mo]: leaf lifespan; LMA [gDM m−2]: Leaf Mass per Area;
Nf [%]: leaf N per leaf dry mass; Amass [nmol C gDM−1 s−1]: photosyn-
thetic capacity), as obtained from the GLOPNET dataset. Units are indicated
prior to log10 transformation.

In order to evaluate the assumption of normality with a more formal approach,
we carried out three well established statistical tests. The results are summarized
in Table C.5. A significance value of 0.05 is used as a cutoff for the statistical
tests. In the Shapiro-Wilks and Kolmogorov-Smirnov tests, the null hypothesis
is that the sample comes from a normal distribution. The p-values of these tests
therefore reflect the chances that the sample comes from a normal distribution,
i.e., the lower the p-value the smaller the chance. In other words, p-values higher
that 0.05 support the null hypothesis, while small p-values imply deviation from
normality. The Anderson-Darling test is evaluating whether data-sample came
from a population with a specific distribution. This is a modification of the
Kolmogorov-Smirnov test with additional weight to distribution’s tails. The null
hypothesis is again that the data come from a normal distribution and low p-
values therefore imply a rejection of the normality hypothesis.

We conclude that despite small deviations from normality, in the scope of our
application, the use of a multivariate normal distribution for sampling plant
species with coordinated leaf traits (in the logarithmic scale, using the GLOP-
NET dataset) is a good approximation, and it is in accordance with other studies
[e.g., Kattge et al., 2011], where the distribution of many plant traits is identified
as log-normal.
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Table C.5: Sample size of the examined sub-sets from the GLOPNET dataset as well
as the obtained p-values of the implemented statistical test for assessing the
normality of the sampled data for the three examined plant life forms (E:
evergreen, D: deciduous, G: grass).

Acr LMA Nf Amass

E 203 370 404 168

D 109 375 324 113

G 19 47 45 21

E 0.014 0.001 0.319 0.442

D 0.028 0.130 0.080 0.340

G 0.000 0.000 0.006 0.253

E 0.431 0.083 0.327 0.939

D 0.153 0.357 0.964 0.346

G 0.381 0.115 0.329 0.976

E 0.038 0.000 0.080 0.503

D 0.017 0.047 0.393 0.152

G 0.000 0.000 0.022 0.495
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c.2.3.3 Sampled vs observed covariation of plant traits

The selected leaf traits (LL: leaf lifespan, LMA: Leaf Mass per Area, Nmass: leaf
N per leaf dry mass, Amass: photosynthetic capacity) of the generated proxy
plant species for each plant-life form are compared with the observed values
from the GLOPNET dataset (Figures C.7, C.8, C.9, for evergreen , deciduous,
and grass life forms). The fitted multivariate normal distribution is capturing
well the cross-correlations of the examined leaf traits, providing therefore an
efficient sampling across the continuous spectrum of observed leaf-plant prop-
erties.

c.2.4 Converting values of photosynthetic capacity (Amass) to maximum Rubisco ca-
pacity at 25 ◦C (Vcmax)

Similarly to other vegetation models, photosynthetic activity in T&C is modeled
using an enhanced version of the biochemical model introduced by Farquhar
et al. [1980]. A detailed description of the embedded photosynthesis scheme can
be found in Fatichi et al. [2012a]. Contrary to other approaches for modeling
photosynthesis [e.g., no-rectangular hyperbola; Johnson and Thornley, 1984], the
photosynthetic capacity (Amass) is not used directly in the model parameteri-
zation and three limiting factors are assumed to regulate the leaf level carbon
assimilation: (i) Rubisco-limitation, (ii) light-limitation, and (iii) export-limited
assimilation rates. The Rubisco activity is included in the biochemical model of
photosynthesis through the maximum Rubisco capacity (Vcmax). Photosynthetic
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Figure C.7: Major plant functional traits (Acr [mo]: leaf lifespan; LMA [gDM m−2]: Leaf
Mass per Area; Nf [%]: leaf N per leaf dry mass; Amass [nmol C gDM−1

s−1]: photosynthetic capacity) for evergreen trees as obtained by the GLOP-
NET database (http://bio.mq.edu.au/∼iwright /glopian.htm), denoted in
red, as well as the 100 generated plant strategies (denoted in blue) based on
the GLOPNET statistics (mean, variance, and covariances of the examined
traits). Units are indicated prior to log10 transformation. In order to avoid
rare/extreme values of plant traits, only values in the 5 to 95% quantile of
the probability density function are included in the analysis.

capacity (Amass) can be therefore used as a surrogate for the maximum Rubisco
capacity [e.g., Collatz et al., 1992] providing that light, temperature, and humid-
ity are not downregulating carbon assimilation. In the present study, leaf-level
values of Vcmax are inferred from the sampled values of Amass (maintaining
the empirical cross-correlations from the GLOPNET database). A detailed bio-
chemical model of photosynthesis was used for converting the maximum pho-



C.2 methodological details on the generation of proxy plant species 137

A
cr

L
M
A

N
f

A
m
a
ss

Acr LMA Nf Amass

0.5

0.6

0.7

0.8

0.9

1.0

1.6

1.8

2.0

2.2

0.0

0.2

0.4

0.6

1.6

1.8

2.0

2.2

2.4

0.5 0.6 0.7 0.8 0.9 1.0 1.6 1.8 2.0 2.2 0.0 0.2 0.4 0.6 1.6 1.8 2.0 2.2 2.4

Figure C.8: Same as Figure C.7, but for deciduous trees.

tosynthetic capacity to the corresponding maximum Rubisco capacity at 25 ◦C
(Vcmax).

The computer code of the implemented photosynthesis model is provided in
a separate file [R format RCoreTeam, 2012]. In summary, it is based on a model
described by Bonan et al. [2011], with the temperature dependence parameteriza-
tion provided by Kattge and Knorr [2007]. The enclosed computer code provides
all the necessary documentation for the implemented equations and parame-
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Figure C.9: Same as Figure C.7, but for grass.

terization of the photosynthesis scheme, therefore assuring reproducibility and
providing a useful toolbox for mechanistic conversion of Amass to Vcmax.

According to Wright et al. [2004], reported values of photosynthetic capacity
(Amass) correspond to photosynthetic assimilation rates measured under favor-
able environmental conditions, i.e, light saturation, favorable temperature, high
soil moisture, no restriction due to vapour pressure deficit, and ambient CO2

concentration. In quantitative terms, we mimic these favorable environmental
conditions using the aforemention photosynthesis model driven with a wide
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range of incoming photosynthetically active radiation (0-500 W m−2), so as to
obtain light saturation. Average CO2 concentration over the last 20 years with
no imposed soil moisture or vapour pressure deficit limitations were also used.
The optimal temperature for photosynthesis was calculated following Kattge and
Knorr [2007]. More specifically, we used a modified Arrhenius function [Johnson
et al., 1942; Medlyn et al., 2002b] to describe the temperature dependence of
Vcmax. The optimum temperature for photosynthesis for Amass and thus the
optimum temperature for estimating Vcmax is [Medlyn et al., 2002b]:

Topt =
Hd

∆S− R ln
(

Ha
Hd−Ha

) (C.1)

where Ha [kJ mol−1] is the activation energy, Hd [kJ mol−1] is the deactivation
energy, and ∆S [J mol−1 K−1] is the so-called entropy factor. Assuming Hd equal
to 200 kJ mol−1 [Kattge and Knorr, 2007; Medlyn et al., 2002a] and inserting into
Eq. C.1 mean values of Ha and ∆S as estimated by the 36 plant species analyzed
by Kattge and Knorr [2007] (i.e., Ha = 72 kJ mol−1 and ∆S = 649 J mol−1 K−1), the
optimal temperature for estimating Vcmax (and thus the one that corresponds
to Amass) is equal to 32.8 ◦C.

While it is widely known that the optimum temperature for photosynthesis
varies with plant growth and temperature [i.e., acclimation effects; Kattge and
Knorr, 2007; Medlyn et al., 2002a, b], the purpose of our study is to generate re-
alistic proxy plant species with coordinated variations of plant traits. Therefore,
the assumption of uniform optimal temperature for photosynthesis, across the
analyzed values of Amass does not affect the final results.

Figure C.10 illustrates a theoretical relationship between maximum Rubisco ca-
pacity and photosynthetic capacity as obtained from the biochemical model of
photosynthesis. More specifically, using this scheme, we obtain which is the
value of Vcmax that yields the Amass sampled from the GLOPNET database.
It is worth mentioning that Rubisco activity is one, out of many factors limit-
ing photosynthesis, therefore a plateau occurs when Vcmax increases leading
to an upper bound in the yielded Amass values. For the 100 generated proxy
plant species, Vcmax was found to range from 11 to 177, 23 to 172, 32 to 241,
with Amass from 1.63 to 25.99, 3.48 to 25.26, 4.69 to 35.14, for evergreen, de-
ciduous, and grass plant-life forms respectively. The coefficient of variation of
Vcmax (Amass) is in the same order of magnitude for the three examined plant-
life forms, i.e., 55.7 (55.9), 40.5 (40.7), and 49.2 (48.7) % for evergreen, deciduous
and grass plant-life forms respectively.
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Figure C.10: Conversion function between photosynthetic capacity and maximum Ru-
bisco capacity as obtained by a mechanistic biochemical model of photo-
synthesis. (a) Density of the yielded Vcmax, (b) theoretical curve as derived
from the photosynthesis model, and (c) density of the originally sampled
Amass values for the three examined plant-life forms.

c.3 data description

c.3.1 Eddy flux tower data

Data of photosynthetic activity (Gross Primary Productivity; GPP), estimated in
five different eddy flux towers located in European Alps, are included in our
analysis (Table C.6). Two sites with evergreen one with deciduous forest are
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included as well as three grassland sites (Table C.6). A detailed description of
the data (location, time period of coverage etc.) is summarized in Table C.6.

Table C.6: Sites (location and tower characteristics) with eddy covariance measurements
used for the gross primary productivity (GPP) comparisons.

Site ID Lon Lat Elevation [m] PFT Country Period Link

Bayreuth DE-Bay 11.87 50.14 775 Evergreen Needleleaf Germany 1996-1999 http://fluxnet.ornl.gov/site/405

Chamau CH-Cha 8.41 47.21 393 Grass Switzerland 2006-2008 http://fluxnet.ornl.gov/site/304

Davos CH-Dav 9.86 46.82 1639 Evergreen Needleleaf Switzerland 2000-2005 http://fluxnet.ornl.gov/site/319

Fruebuel CH-Fru 8.54 47.12 982 Grass Switzerland 2006-2008 http://fluxnet.ornl.gov/site/306

Laegeren CH-Lae 8.37 47.48 689 Deciduous Broadleaf Switzerland 2004-2009 http://fluxnet.ornl.gov/site/308

Oensingen1 CH-Oe1 7.73 47.29 450 Grass Switzerland 2002-2003 http://fluxnet.ornl.gov/site/313

Renon IT-Ren 11.43 46.59 1730 Evergreen Needleleaf Italy 1999-2009 http://fluxnet.ornl.gov/site/530

c.3.2 MODIS data

MODIS estimates of GPP and LAI across the examined elevation gradients (rep-
resentative of the European Alpine region) are based on the MODIS land prod-
uct MOD17A2 (Version 005) and MOD15A2 (Version 005) for GPP and LAI
respectively. The resolution of both products is 1× 1 km2 with a eight-days reg-
ular time-step. Apart from the usual quality assurance layer of MODIS products,
an additional analysis was conducted following the methodology presented by
Hwang et al. [2011]. A detailed description of MODIS pre-processing for the
Alpine region is provided in Bogler [2013] as well as in Section B.4.

c.3.3 Swiss National Forest Inventory

The Swiss National Forest Inventory (NFI; http://www.lfi.ch), a joint project of
the Federal Office for the Environment (FOEN) and the Swiss Federal Institute
for Forest, Snow and Landscape Research (WSL), records different vegetation
variables related to the area, structure and status of forests in Switzerland. The
NFI database consists so far of three surveys: the first was conducted for the
period from 1983 to 1985 (NFI1), the second from 1993 to 1995 (NFI2), and the
third from 2004 to 2006 (NFI3). For more details on the Swiss NFI and its meth-
ods see Brassel and Lischke [2001] and www.lfi.ch as well as in Section B.5. In the
present study, we are focusing on the changes in aboveground (woody) biomass
(∆AGB) across elevation gradients (data provided by WSL [2012]). This changes
are estimated using the mean values (over the three consecutive inventories) of
the annual increments of aboveground woody biomass of the survivor trees in
the sampled plots. In order to convert tree biomass to carbon amounts, a fixed
proportion of 50% C per kg of dry biomass was assumed. The identified species
in the forest inventory plots are assigned to broad vegetation categories repre-
senting evergreen and deciduous woody plant-life forms. Evergreen plant-life
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form corresponds to the following species: Picea sp. (Spruce), Abies sp. (Fir), Pi-
nus sp. (Scots pine), and Pinus cembra (Arve); and deciduous plant-life form to:
Fagus sylvatica (Beech), Acer sp. (Maple), Fraxinus sp. (Ash-tree), Quercus sp.
(Oak), and Castanea sativa (Chestnut). Since the values from the forest invento-
ries are reported per total area of the examined plot (not based on the relative
coverage of each species), for a fair comparison with model results (presented
per plant-life form in the main text), we keep only the plots where more than
80% of the total plot biomass is coming from only one of the examined plant-
life forms. More details on the pre-processing of the NFI data can be found in
Section B.5.
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